/* Target-dependent code for FreeBSD/mips. Copyright (C) 2017-2018 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "defs.h" #include "osabi.h" #include "regset.h" #include "trad-frame.h" #include "tramp-frame.h" #include "fbsd-tdep.h" #include "mips-tdep.h" #include "mips-fbsd-tdep.h" #include "solib-svr4.h" /* Core file support. */ /* Number of registers in `struct reg' from <machine/reg.h>. The first 38 follow the standard MIPS layout. The 39th holds IC_INT_REG on RM7K and RM9K processors. The 40th is a dummy for padding. */ #define MIPS_FBSD_NUM_GREGS 40 /* Number of registers in `struct fpreg' from <machine/reg.h>. The first 32 hold floating point registers. 33 holds the FSR. The 34th holds FIR on FreeBSD 12.0 and newer kernels. On older kernels it was a zero-filled dummy for padding. */ #define MIPS_FBSD_NUM_FPREGS 34 /* Supply a single register. The register size might not match, so use regcache->raw_supply_integer (). */ static void mips_fbsd_supply_reg (struct regcache *regcache, int regnum, const void *addr, size_t len) { regcache->raw_supply_integer (regnum, (const gdb_byte *) addr, len, true); } /* Collect a single register. The register size might not match, so use regcache->raw_collect_integer (). */ static void mips_fbsd_collect_reg (const struct regcache *regcache, int regnum, void *addr, size_t len) { regcache->raw_collect_integer (regnum, (gdb_byte *) addr, len, true); } /* Supply the floating-point registers stored in FPREGS to REGCACHE. Each floating-point register in FPREGS is REGSIZE bytes in length. */ void mips_fbsd_supply_fpregs (struct regcache *regcache, int regnum, const void *fpregs, size_t regsize) { struct gdbarch *gdbarch = regcache->arch (); const gdb_byte *regs = (const gdb_byte *) fpregs; int i, fp0num; fp0num = mips_regnum (gdbarch)->fp0; for (i = 0; i <= 32; i++) if (regnum == fp0num + i || regnum == -1) mips_fbsd_supply_reg (regcache, fp0num + i, regs + i * regsize, regsize); if (regnum == mips_regnum (gdbarch)->fp_control_status || regnum == -1) mips_fbsd_supply_reg (regcache, mips_regnum (gdbarch)->fp_control_status, regs + 32 * regsize, regsize); if ((regnum == mips_regnum (gdbarch)->fp_implementation_revision || regnum == -1) && extract_unsigned_integer (regs + 33 * regsize, regsize, gdbarch_byte_order (gdbarch)) != 0) mips_fbsd_supply_reg (regcache, mips_regnum (gdbarch)->fp_implementation_revision, regs + 33 * regsize, regsize); } /* Supply the general-purpose registers stored in GREGS to REGCACHE. Each general-purpose register in GREGS is REGSIZE bytes in length. */ void mips_fbsd_supply_gregs (struct regcache *regcache, int regnum, const void *gregs, size_t regsize) { struct gdbarch *gdbarch = regcache->arch (); const gdb_byte *regs = (const gdb_byte *) gregs; int i; for (i = 0; i <= mips_regnum (gdbarch)->pc; i++) if (regnum == i || regnum == -1) mips_fbsd_supply_reg (regcache, i, regs + i * regsize, regsize); } /* Collect the floating-point registers from REGCACHE and store them in FPREGS. Each floating-point register in FPREGS is REGSIZE bytes in length. */ void mips_fbsd_collect_fpregs (const struct regcache *regcache, int regnum, void *fpregs, size_t regsize) { struct gdbarch *gdbarch = regcache->arch (); gdb_byte *regs = (gdb_byte *) fpregs; int i, fp0num; fp0num = mips_regnum (gdbarch)->fp0; for (i = 0; i < 32; i++) if (regnum == fp0num + i || regnum == -1) mips_fbsd_collect_reg (regcache, fp0num + i, regs + i * regsize, regsize); if (regnum == mips_regnum (gdbarch)->fp_control_status || regnum == -1) mips_fbsd_collect_reg (regcache, mips_regnum (gdbarch)->fp_control_status, regs + 32 * regsize, regsize); if (regnum == mips_regnum (gdbarch)->fp_implementation_revision || regnum == -1) mips_fbsd_collect_reg (regcache, mips_regnum (gdbarch)->fp_implementation_revision, regs + 33 * regsize, regsize); } /* Collect the general-purpose registers from REGCACHE and store them in GREGS. Each general-purpose register in GREGS is REGSIZE bytes in length. */ void mips_fbsd_collect_gregs (const struct regcache *regcache, int regnum, void *gregs, size_t regsize) { struct gdbarch *gdbarch = regcache->arch (); gdb_byte *regs = (gdb_byte *) gregs; int i; for (i = 0; i <= mips_regnum (gdbarch)->pc; i++) if (regnum == i || regnum == -1) mips_fbsd_collect_reg (regcache, i, regs + i * regsize, regsize); } /* Supply register REGNUM from the buffer specified by FPREGS and LEN in the floating-point register set REGSET to register cache REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ static void mips_fbsd_supply_fpregset (const struct regset *regset, struct regcache *regcache, int regnum, const void *fpregs, size_t len) { size_t regsize = mips_abi_regsize (regcache->arch ()); gdb_assert (len >= MIPS_FBSD_NUM_FPREGS * regsize); mips_fbsd_supply_fpregs (regcache, regnum, fpregs, regsize); } /* Collect register REGNUM from the register cache REGCACHE and store it in the buffer specified by FPREGS and LEN in the floating-point register set REGSET. If REGNUM is -1, do this for all registers in REGSET. */ static void mips_fbsd_collect_fpregset (const struct regset *regset, const struct regcache *regcache, int regnum, void *fpregs, size_t len) { size_t regsize = mips_abi_regsize (regcache->arch ()); gdb_assert (len >= MIPS_FBSD_NUM_FPREGS * regsize); mips_fbsd_collect_fpregs (regcache, regnum, fpregs, regsize); } /* Supply register REGNUM from the buffer specified by GREGS and LEN in the general-purpose register set REGSET to register cache REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ static void mips_fbsd_supply_gregset (const struct regset *regset, struct regcache *regcache, int regnum, const void *gregs, size_t len) { size_t regsize = mips_abi_regsize (regcache->arch ()); gdb_assert (len >= MIPS_FBSD_NUM_GREGS * regsize); mips_fbsd_supply_gregs (regcache, regnum, gregs, regsize); } /* Collect register REGNUM from the register cache REGCACHE and store it in the buffer specified by GREGS and LEN in the general-purpose register set REGSET. If REGNUM is -1, do this for all registers in REGSET. */ static void mips_fbsd_collect_gregset (const struct regset *regset, const struct regcache *regcache, int regnum, void *gregs, size_t len) { size_t regsize = mips_abi_regsize (regcache->arch ()); gdb_assert (len >= MIPS_FBSD_NUM_GREGS * regsize); mips_fbsd_collect_gregs (regcache, regnum, gregs, regsize); } /* FreeBSD/mips register sets. */ static const struct regset mips_fbsd_gregset = { NULL, mips_fbsd_supply_gregset, mips_fbsd_collect_gregset, }; static const struct regset mips_fbsd_fpregset = { NULL, mips_fbsd_supply_fpregset, mips_fbsd_collect_fpregset, }; /* Iterate over core file register note sections. */ static void mips_fbsd_iterate_over_regset_sections (struct gdbarch *gdbarch, iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache) { size_t regsize = mips_abi_regsize (gdbarch); cb (".reg", MIPS_FBSD_NUM_GREGS * regsize, &mips_fbsd_gregset, NULL, cb_data); cb (".reg2", MIPS_FBSD_NUM_FPREGS * regsize, &mips_fbsd_fpregset, NULL, cb_data); } /* Signal trampoline support. */ #define FBSD_SYS_sigreturn 417 #define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + FBSD_SYS_sigreturn #define MIPS_INST_SYSCALL 0x0000000c #define MIPS_INST_BREAK 0x0000000d #define O32_SIGFRAME_UCONTEXT_OFFSET (16) #define O32_SIGSET_T_SIZE (16) #define O32_UCONTEXT_ONSTACK (O32_SIGSET_T_SIZE) #define O32_UCONTEXT_PC (O32_UCONTEXT_ONSTACK + 4) #define O32_UCONTEXT_REGS (O32_UCONTEXT_PC + 4) #define O32_UCONTEXT_SR (O32_UCONTEXT_REGS + 4 * 32) #define O32_UCONTEXT_LO (O32_UCONTEXT_SR + 4) #define O32_UCONTEXT_HI (O32_UCONTEXT_LO + 4) #define O32_UCONTEXT_FPUSED (O32_UCONTEXT_HI + 4) #define O32_UCONTEXT_FPREGS (O32_UCONTEXT_FPUSED + 4) #define O32_UCONTEXT_REG_SIZE 4 static void mips_fbsd_sigframe_init (const struct tramp_frame *self, struct frame_info *this_frame, struct trad_frame_cache *cache, CORE_ADDR func) { struct gdbarch *gdbarch = get_frame_arch (this_frame); enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); CORE_ADDR sp, ucontext_addr, addr; int regnum; gdb_byte buf[4]; /* We find the appropriate instance of `ucontext_t' at a fixed offset in the signal frame. */ sp = get_frame_register_signed (this_frame, MIPS_SP_REGNUM + gdbarch_num_regs (gdbarch)); ucontext_addr = sp + O32_SIGFRAME_UCONTEXT_OFFSET; /* PC. */ regnum = mips_regnum (gdbarch)->pc; trad_frame_set_reg_addr (cache, regnum + gdbarch_num_regs (gdbarch), ucontext_addr + O32_UCONTEXT_PC); /* GPRs. */ for (regnum = MIPS_ZERO_REGNUM, addr = ucontext_addr + O32_UCONTEXT_REGS; regnum <= MIPS_RA_REGNUM; regnum++, addr += O32_UCONTEXT_REG_SIZE) trad_frame_set_reg_addr (cache, regnum + gdbarch_num_regs (gdbarch), addr); regnum = MIPS_PS_REGNUM; trad_frame_set_reg_addr (cache, regnum + gdbarch_num_regs (gdbarch), ucontext_addr + O32_UCONTEXT_SR); /* HI and LO. */ regnum = mips_regnum (gdbarch)->lo; trad_frame_set_reg_addr (cache, regnum + gdbarch_num_regs (gdbarch), ucontext_addr + O32_UCONTEXT_LO); regnum = mips_regnum (gdbarch)->hi; trad_frame_set_reg_addr (cache, regnum + gdbarch_num_regs (gdbarch), ucontext_addr + O32_UCONTEXT_HI); if (target_read_memory (ucontext_addr + O32_UCONTEXT_FPUSED, buf, 4) == 0 && extract_unsigned_integer (buf, 4, byte_order) != 0) { for (regnum = 0, addr = ucontext_addr + O32_UCONTEXT_FPREGS; regnum < 32; regnum++, addr += O32_UCONTEXT_REG_SIZE) trad_frame_set_reg_addr (cache, regnum + gdbarch_fp0_regnum (gdbarch), addr); trad_frame_set_reg_addr (cache, mips_regnum (gdbarch)->fp_control_status, addr); } trad_frame_set_id (cache, frame_id_build (sp, func)); } #define MIPS_INST_ADDIU_A0_SP_O32 (0x27a40000 \ + O32_SIGFRAME_UCONTEXT_OFFSET) static const struct tramp_frame mips_fbsd_sigframe = { SIGTRAMP_FRAME, MIPS_INSN32_SIZE, { { MIPS_INST_ADDIU_A0_SP_O32, -1 }, /* addiu a0, sp, SIGF_UC */ { MIPS_INST_LI_V0_SIGRETURN, -1 }, /* li v0, SYS_sigreturn */ { MIPS_INST_SYSCALL, -1 }, /* syscall */ { MIPS_INST_BREAK, -1 }, /* break */ { TRAMP_SENTINEL_INSN, -1 } }, mips_fbsd_sigframe_init }; #define N64_SIGFRAME_UCONTEXT_OFFSET (32) #define N64_SIGSET_T_SIZE (16) #define N64_UCONTEXT_ONSTACK (N64_SIGSET_T_SIZE) #define N64_UCONTEXT_PC (N64_UCONTEXT_ONSTACK + 8) #define N64_UCONTEXT_REGS (N64_UCONTEXT_PC + 8) #define N64_UCONTEXT_SR (N64_UCONTEXT_REGS + 8 * 32) #define N64_UCONTEXT_LO (N64_UCONTEXT_SR + 8) #define N64_UCONTEXT_HI (N64_UCONTEXT_LO + 8) #define N64_UCONTEXT_FPUSED (N64_UCONTEXT_HI + 8) #define N64_UCONTEXT_FPREGS (N64_UCONTEXT_FPUSED + 8) #define N64_UCONTEXT_REG_SIZE 8 static void mips64_fbsd_sigframe_init (const struct tramp_frame *self, struct frame_info *this_frame, struct trad_frame_cache *cache, CORE_ADDR func) { struct gdbarch *gdbarch = get_frame_arch (this_frame); enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); CORE_ADDR sp, ucontext_addr, addr; int regnum; gdb_byte buf[4]; /* We find the appropriate instance of `ucontext_t' at a fixed offset in the signal frame. */ sp = get_frame_register_signed (this_frame, MIPS_SP_REGNUM + gdbarch_num_regs (gdbarch)); ucontext_addr = sp + N64_SIGFRAME_UCONTEXT_OFFSET; /* PC. */ regnum = mips_regnum (gdbarch)->pc; trad_frame_set_reg_addr (cache, regnum + gdbarch_num_regs (gdbarch), ucontext_addr + N64_UCONTEXT_PC); /* GPRs. */ for (regnum = MIPS_ZERO_REGNUM, addr = ucontext_addr + N64_UCONTEXT_REGS; regnum <= MIPS_RA_REGNUM; regnum++, addr += N64_UCONTEXT_REG_SIZE) trad_frame_set_reg_addr (cache, regnum + gdbarch_num_regs (gdbarch), addr); regnum = MIPS_PS_REGNUM; trad_frame_set_reg_addr (cache, regnum + gdbarch_num_regs (gdbarch), ucontext_addr + N64_UCONTEXT_SR); /* HI and LO. */ regnum = mips_regnum (gdbarch)->lo; trad_frame_set_reg_addr (cache, regnum + gdbarch_num_regs (gdbarch), ucontext_addr + N64_UCONTEXT_LO); regnum = mips_regnum (gdbarch)->hi; trad_frame_set_reg_addr (cache, regnum + gdbarch_num_regs (gdbarch), ucontext_addr + N64_UCONTEXT_HI); if (target_read_memory (ucontext_addr + N64_UCONTEXT_FPUSED, buf, 4) == 0 && extract_unsigned_integer (buf, 4, byte_order) != 0) { for (regnum = 0, addr = ucontext_addr + N64_UCONTEXT_FPREGS; regnum < 32; regnum++, addr += N64_UCONTEXT_REG_SIZE) trad_frame_set_reg_addr (cache, regnum + gdbarch_fp0_regnum (gdbarch), addr); trad_frame_set_reg_addr (cache, mips_regnum (gdbarch)->fp_control_status, addr); } trad_frame_set_id (cache, frame_id_build (sp, func)); } #define MIPS_INST_ADDIU_A0_SP_N32 (0x27a40000 \ + N64_SIGFRAME_UCONTEXT_OFFSET) static const struct tramp_frame mipsn32_fbsd_sigframe = { SIGTRAMP_FRAME, MIPS_INSN32_SIZE, { { MIPS_INST_ADDIU_A0_SP_N32, -1 }, /* addiu a0, sp, SIGF_UC */ { MIPS_INST_LI_V0_SIGRETURN, -1 }, /* li v0, SYS_sigreturn */ { MIPS_INST_SYSCALL, -1 }, /* syscall */ { MIPS_INST_BREAK, -1 }, /* break */ { TRAMP_SENTINEL_INSN, -1 } }, mips64_fbsd_sigframe_init }; #define MIPS_INST_DADDIU_A0_SP_N64 (0x67a40000 \ + N64_SIGFRAME_UCONTEXT_OFFSET) static const struct tramp_frame mips64_fbsd_sigframe = { SIGTRAMP_FRAME, MIPS_INSN32_SIZE, { { MIPS_INST_DADDIU_A0_SP_N64, -1 }, /* daddiu a0, sp, SIGF_UC */ { MIPS_INST_LI_V0_SIGRETURN, -1 }, /* li v0, SYS_sigreturn */ { MIPS_INST_SYSCALL, -1 }, /* syscall */ { MIPS_INST_BREAK, -1 }, /* break */ { TRAMP_SENTINEL_INSN, -1 } }, mips64_fbsd_sigframe_init }; /* Shared library support. */ /* FreeBSD/mips uses a slightly different `struct link_map' than the other FreeBSD platforms as it includes an additional `l_off' member. */ static struct link_map_offsets * mips_fbsd_ilp32_fetch_link_map_offsets (void) { static struct link_map_offsets lmo; static struct link_map_offsets *lmp = NULL; if (lmp == NULL) { lmp = &lmo; lmo.r_version_offset = 0; lmo.r_version_size = 4; lmo.r_map_offset = 4; lmo.r_brk_offset = 8; lmo.r_ldsomap_offset = -1; lmo.link_map_size = 24; lmo.l_addr_offset = 0; lmo.l_name_offset = 8; lmo.l_ld_offset = 12; lmo.l_next_offset = 16; lmo.l_prev_offset = 20; } return lmp; } static struct link_map_offsets * mips_fbsd_lp64_fetch_link_map_offsets (void) { static struct link_map_offsets lmo; static struct link_map_offsets *lmp = NULL; if (lmp == NULL) { lmp = &lmo; lmo.r_version_offset = 0; lmo.r_version_size = 4; lmo.r_map_offset = 8; lmo.r_brk_offset = 16; lmo.r_ldsomap_offset = -1; lmo.link_map_size = 48; lmo.l_addr_offset = 0; lmo.l_name_offset = 16; lmo.l_ld_offset = 24; lmo.l_next_offset = 32; lmo.l_prev_offset = 40; } return lmp; } static void mips_fbsd_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) { enum mips_abi abi = mips_abi (gdbarch); /* Generic FreeBSD support. */ fbsd_init_abi (info, gdbarch); set_gdbarch_software_single_step (gdbarch, mips_software_single_step); switch (abi) { case MIPS_ABI_O32: tramp_frame_prepend_unwinder (gdbarch, &mips_fbsd_sigframe); break; case MIPS_ABI_N32: tramp_frame_prepend_unwinder (gdbarch, &mipsn32_fbsd_sigframe); break; case MIPS_ABI_N64: tramp_frame_prepend_unwinder (gdbarch, &mips64_fbsd_sigframe); break; } set_gdbarch_iterate_over_regset_sections (gdbarch, mips_fbsd_iterate_over_regset_sections); /* FreeBSD/mips has SVR4-style shared libraries. */ set_solib_svr4_fetch_link_map_offsets (gdbarch, (gdbarch_ptr_bit (gdbarch) == 32 ? mips_fbsd_ilp32_fetch_link_map_offsets : mips_fbsd_lp64_fetch_link_map_offsets)); } void _initialize_mips_fbsd_tdep (void) { gdbarch_register_osabi (bfd_arch_mips, 0, GDB_OSABI_FREEBSD, mips_fbsd_init_abi); }