aboutsummaryrefslogtreecommitdiff
blob: 12bfa8bbdcc97990d837b6e1280007481ea5c3b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
/* A splay-tree datatype.  
   Copyright (C) 1998, 1999, 2000, 2001, 2009,
   2010, 2011 Free Software Foundation, Inc.
   Contributed by Mark Mitchell (mark@markmitchell.com).

This file is part of GNU CC.
   
GNU CC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 51 Franklin Street - Fifth Floor,
Boston, MA 02110-1301, USA.  */

/* For an easily readable description of splay-trees, see:

     Lewis, Harry R. and Denenberg, Larry.  Data Structures and Their
     Algorithms.  Harper-Collins, Inc.  1991.  */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif

#include <stdio.h>

#include "libiberty.h"
#include "splay-tree.h"

static void splay_tree_delete_helper (splay_tree, splay_tree_node);
static inline void rotate_left (splay_tree_node *,
				splay_tree_node, splay_tree_node);
static inline void rotate_right (splay_tree_node *,
				splay_tree_node, splay_tree_node);
static void splay_tree_splay (splay_tree, splay_tree_key);
static int splay_tree_foreach_helper (splay_tree_node,
                                      splay_tree_foreach_fn, void*);

/* Deallocate NODE (a member of SP), and all its sub-trees.  */

static void 
splay_tree_delete_helper (splay_tree sp, splay_tree_node node)
{
  splay_tree_node pending = 0;
  splay_tree_node active = 0;

  if (!node)
    return;

#define KDEL(x)  if (sp->delete_key) (*sp->delete_key)(x);
#define VDEL(x)  if (sp->delete_value) (*sp->delete_value)(x);

  KDEL (node->key);
  VDEL (node->value);

  /* We use the "key" field to hold the "next" pointer.  */
  node->key = (splay_tree_key)pending;
  pending = (splay_tree_node)node;

  /* Now, keep processing the pending list until there aren't any
     more.  This is a little more complicated than just recursing, but
     it doesn't toast the stack for large trees.  */

  while (pending)
    {
      active = pending;
      pending = 0;
      while (active)
	{
	  splay_tree_node temp;

	  /* active points to a node which has its key and value
	     deallocated, we just need to process left and right.  */

	  if (active->left)
	    {
	      KDEL (active->left->key);
	      VDEL (active->left->value);
	      active->left->key = (splay_tree_key)pending;
	      pending = (splay_tree_node)(active->left);
	    }
	  if (active->right)
	    {
	      KDEL (active->right->key);
	      VDEL (active->right->value);
	      active->right->key = (splay_tree_key)pending;
	      pending = (splay_tree_node)(active->right);
	    }

	  temp = active;
	  active = (splay_tree_node)(temp->key);
	  (*sp->deallocate) ((char*) temp, sp->allocate_data);
	}
    }
#undef KDEL
#undef VDEL
}

/* Rotate the edge joining the left child N with its parent P.  PP is the
   grandparents' pointer to P.  */

static inline void
rotate_left (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
{
  splay_tree_node tmp;
  tmp = n->right;
  n->right = p;
  p->left = tmp;
  *pp = n;
}

/* Rotate the edge joining the right child N with its parent P.  PP is the
   grandparents' pointer to P.  */

static inline void
rotate_right (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
{
  splay_tree_node tmp;
  tmp = n->left;
  n->left = p;
  p->right = tmp;
  *pp = n;
}

/* Bottom up splay of key.  */

static void
splay_tree_splay (splay_tree sp, splay_tree_key key)
{
  if (sp->root == 0)
    return;

  do {
    int cmp1, cmp2;
    splay_tree_node n, c;

    n = sp->root;
    cmp1 = (*sp->comp) (key, n->key);

    /* Found.  */
    if (cmp1 == 0)
      return;

    /* Left or right?  If no child, then we're done.  */
    if (cmp1 < 0)
      c = n->left;
    else
      c = n->right;
    if (!c)
      return;

    /* Next one left or right?  If found or no child, we're done
       after one rotation.  */
    cmp2 = (*sp->comp) (key, c->key);
    if (cmp2 == 0
        || (cmp2 < 0 && !c->left)
        || (cmp2 > 0 && !c->right))
      {
	if (cmp1 < 0)
	  rotate_left (&sp->root, n, c);
	else
	  rotate_right (&sp->root, n, c);
        return;
      }

    /* Now we have the four cases of double-rotation.  */
    if (cmp1 < 0 && cmp2 < 0)
      {
	rotate_left (&n->left, c, c->left);
	rotate_left (&sp->root, n, n->left);
      }
    else if (cmp1 > 0 && cmp2 > 0)
      {
	rotate_right (&n->right, c, c->right);
	rotate_right (&sp->root, n, n->right);
      }
    else if (cmp1 < 0 && cmp2 > 0)
      {
	rotate_right (&n->left, c, c->right);
	rotate_left (&sp->root, n, n->left);
      }
    else if (cmp1 > 0 && cmp2 < 0)
      {
	rotate_left (&n->right, c, c->left);
	rotate_right (&sp->root, n, n->right);
      }
  } while (1);
}

/* Call FN, passing it the DATA, for every node below NODE, all of
   which are from SP, following an in-order traversal.  If FN every
   returns a non-zero value, the iteration ceases immediately, and the
   value is returned.  Otherwise, this function returns 0.  */

static int
splay_tree_foreach_helper (splay_tree_node node,
                           splay_tree_foreach_fn fn, void *data)
{
  int val;
  splay_tree_node *stack;
  int stack_ptr, stack_size;

  /* A non-recursive implementation is used to avoid filling the stack
     for large trees.  Splay trees are worst case O(n) in the depth of
     the tree.  */

#define INITIAL_STACK_SIZE 100
  stack_size = INITIAL_STACK_SIZE;
  stack_ptr = 0;
  stack = XNEWVEC (splay_tree_node, stack_size);
  val = 0;

  for (;;)
    {
      while (node != NULL)
	{
	  if (stack_ptr == stack_size)
	    {
	      stack_size *= 2;
	      stack = XRESIZEVEC (splay_tree_node, stack, stack_size);
	    }
	  stack[stack_ptr++] = node;
	  node = node->left;
	}

      if (stack_ptr == 0)
	break;

      node = stack[--stack_ptr];

      val = (*fn) (node, data);
      if (val)
	break;

      node = node->right;
    }

  XDELETEVEC (stack);
  return val;
}

/* An allocator and deallocator based on xmalloc.  */
static void *
splay_tree_xmalloc_allocate (int size, void *data ATTRIBUTE_UNUSED)
{
  return (void *) xmalloc (size);
}

static void
splay_tree_xmalloc_deallocate (void *object, void *data ATTRIBUTE_UNUSED)
{
  free (object);
}


/* Allocate a new splay tree, using COMPARE_FN to compare nodes,
   DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
   values.  Use xmalloc to allocate the splay tree structure, and any
   nodes added.  */

splay_tree 
splay_tree_new (splay_tree_compare_fn compare_fn,
                splay_tree_delete_key_fn delete_key_fn,
                splay_tree_delete_value_fn delete_value_fn)
{
  return (splay_tree_new_with_allocator
          (compare_fn, delete_key_fn, delete_value_fn,
           splay_tree_xmalloc_allocate, splay_tree_xmalloc_deallocate, 0));
}


/* Allocate a new splay tree, using COMPARE_FN to compare nodes,
   DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
   values.  */

splay_tree 
splay_tree_new_with_allocator (splay_tree_compare_fn compare_fn,
                               splay_tree_delete_key_fn delete_key_fn,
                               splay_tree_delete_value_fn delete_value_fn,
                               splay_tree_allocate_fn allocate_fn,
                               splay_tree_deallocate_fn deallocate_fn,
                               void *allocate_data)
{
  return
    splay_tree_new_typed_alloc (compare_fn, delete_key_fn, delete_value_fn,
				allocate_fn, allocate_fn, deallocate_fn,
				allocate_data);
}

/*

@deftypefn Supplemental splay_tree splay_tree_new_with_typed_alloc @
(splay_tree_compare_fn @var{compare_fn}, @
splay_tree_delete_key_fn @var{delete_key_fn}, @
splay_tree_delete_value_fn @var{delete_value_fn}, @
splay_tree_allocate_fn @var{tree_allocate_fn}, @
splay_tree_allocate_fn @var{node_allocate_fn}, @
splay_tree_deallocate_fn @var{deallocate_fn}, @
void * @var{allocate_data})

This function creates a splay tree that uses two different allocators
@var{tree_allocate_fn} and @var{node_allocate_fn} to use for allocating the
tree itself and its nodes respectively.  This is useful when variables of
different types need to be allocated with different allocators.

The splay tree will use @var{compare_fn} to compare nodes,
@var{delete_key_fn} to deallocate keys, and @var{delete_value_fn} to
deallocate values.

@end deftypefn

*/

splay_tree
splay_tree_new_typed_alloc (splay_tree_compare_fn compare_fn,
			    splay_tree_delete_key_fn delete_key_fn,
			    splay_tree_delete_value_fn delete_value_fn,
			    splay_tree_allocate_fn tree_allocate_fn,
			    splay_tree_allocate_fn node_allocate_fn,
			    splay_tree_deallocate_fn deallocate_fn,
			    void * allocate_data)
{
  splay_tree sp = (splay_tree) (*tree_allocate_fn)
    (sizeof (struct splay_tree_s), allocate_data);

  sp->root = 0;
  sp->comp = compare_fn;
  sp->delete_key = delete_key_fn;
  sp->delete_value = delete_value_fn;
  sp->allocate = node_allocate_fn;
  sp->deallocate = deallocate_fn;
  sp->allocate_data = allocate_data;

  return sp;
}

/* Deallocate SP.  */

void 
splay_tree_delete (splay_tree sp)
{
  splay_tree_delete_helper (sp, sp->root);
  (*sp->deallocate) ((char*) sp, sp->allocate_data);
}

/* Insert a new node (associating KEY with DATA) into SP.  If a
   previous node with the indicated KEY exists, its data is replaced
   with the new value.  Returns the new node.  */

splay_tree_node
splay_tree_insert (splay_tree sp, splay_tree_key key, splay_tree_value value)
{
  int comparison = 0;

  splay_tree_splay (sp, key);

  if (sp->root)
    comparison = (*sp->comp)(sp->root->key, key);

  if (sp->root && comparison == 0)
    {
      /* If the root of the tree already has the indicated KEY, just
	 replace the value with VALUE.  */
      if (sp->delete_value)
	(*sp->delete_value)(sp->root->value);
      sp->root->value = value;
    } 
  else 
    {
      /* Create a new node, and insert it at the root.  */
      splay_tree_node node;

      node = ((splay_tree_node)
	      (*sp->allocate) (sizeof (struct splay_tree_node_s),
			       sp->allocate_data));
      node->key = key;
      node->value = value;
      
      if (!sp->root)
	node->left = node->right = 0;
      else if (comparison < 0)
	{
	  node->left = sp->root;
	  node->right = node->left->right;
	  node->left->right = 0;
	}
      else
	{
	  node->right = sp->root;
	  node->left = node->right->left;
	  node->right->left = 0;
	}

      sp->root = node;
    }

  return sp->root;
}

/* Remove KEY from SP.  It is not an error if it did not exist.  */

void
splay_tree_remove (splay_tree sp, splay_tree_key key)
{
  splay_tree_splay (sp, key);

  if (sp->root && (*sp->comp) (sp->root->key, key) == 0)
    {
      splay_tree_node left, right;

      left = sp->root->left;
      right = sp->root->right;

      /* Delete the root node itself.  */
      if (sp->delete_value)
	(*sp->delete_value) (sp->root->value);
      (*sp->deallocate) (sp->root, sp->allocate_data);

      /* One of the children is now the root.  Doesn't matter much
	 which, so long as we preserve the properties of the tree.  */
      if (left)
	{
	  sp->root = left;

	  /* If there was a right child as well, hang it off the 
	     right-most leaf of the left child.  */
	  if (right)
	    {
	      while (left->right)
		left = left->right;
	      left->right = right;
	    }
	}
      else
	sp->root = right;
    }
}

/* Lookup KEY in SP, returning VALUE if present, and NULL 
   otherwise.  */

splay_tree_node
splay_tree_lookup (splay_tree sp, splay_tree_key key)
{
  splay_tree_splay (sp, key);

  if (sp->root && (*sp->comp)(sp->root->key, key) == 0)
    return sp->root;
  else
    return 0;
}

/* Return the node in SP with the greatest key.  */

splay_tree_node
splay_tree_max (splay_tree sp)
{
  splay_tree_node n = sp->root;

  if (!n)
    return NULL;

  while (n->right)
    n = n->right;

  return n;
}

/* Return the node in SP with the smallest key.  */

splay_tree_node
splay_tree_min (splay_tree sp)
{
  splay_tree_node n = sp->root;

  if (!n)
    return NULL;

  while (n->left)
    n = n->left;

  return n;
}

/* Return the immediate predecessor KEY, or NULL if there is no
   predecessor.  KEY need not be present in the tree.  */

splay_tree_node
splay_tree_predecessor (splay_tree sp, splay_tree_key key)
{
  int comparison;
  splay_tree_node node;

  /* If the tree is empty, there is certainly no predecessor.  */
  if (!sp->root)
    return NULL;

  /* Splay the tree around KEY.  That will leave either the KEY
     itself, its predecessor, or its successor at the root.  */
  splay_tree_splay (sp, key);
  comparison = (*sp->comp)(sp->root->key, key);

  /* If the predecessor is at the root, just return it.  */
  if (comparison < 0)
    return sp->root;

  /* Otherwise, find the rightmost element of the left subtree.  */
  node = sp->root->left;
  if (node)
    while (node->right)
      node = node->right;

  return node;
}

/* Return the immediate successor KEY, or NULL if there is no
   successor.  KEY need not be present in the tree.  */

splay_tree_node
splay_tree_successor (splay_tree sp, splay_tree_key key)
{
  int comparison;
  splay_tree_node node;

  /* If the tree is empty, there is certainly no successor.  */
  if (!sp->root)
    return NULL;

  /* Splay the tree around KEY.  That will leave either the KEY
     itself, its predecessor, or its successor at the root.  */
  splay_tree_splay (sp, key);
  comparison = (*sp->comp)(sp->root->key, key);

  /* If the successor is at the root, just return it.  */
  if (comparison > 0)
    return sp->root;

  /* Otherwise, find the leftmost element of the right subtree.  */
  node = sp->root->right;
  if (node)
    while (node->left)
      node = node->left;

  return node;
}

/* Call FN, passing it the DATA, for every node in SP, following an
   in-order traversal.  If FN every returns a non-zero value, the
   iteration ceases immediately, and the value is returned.
   Otherwise, this function returns 0.  */

int
splay_tree_foreach (splay_tree sp, splay_tree_foreach_fn fn, void *data)
{
  return splay_tree_foreach_helper (sp->root, fn, data);
}

/* Splay-tree comparison function, treating the keys as ints.  */

int
splay_tree_compare_ints (splay_tree_key k1, splay_tree_key k2)
{
  if ((int) k1 < (int) k2)
    return -1;
  else if ((int) k1 > (int) k2)
    return 1;
  else 
    return 0;
}

/* Splay-tree comparison function, treating the keys as pointers.  */

int
splay_tree_compare_pointers (splay_tree_key k1, splay_tree_key k2)
{
  if ((char*) k1 < (char*) k2)
    return -1;
  else if ((char*) k1 > (char*) k2)
    return 1;
  else 
    return 0;
}