1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
|
/* Copyright (C) 2001-2021 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* CIE color rendering cache management */
#include "math_.h"
#include "memory_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsstruct.h"
#include "gsmatrix.h" /* for gscolor2.h */
#include "gxcspace.h" /* for gxcie.c */
#include "gscolor2.h" /* for gs_set/currentcolorrendering */
#include "gxarith.h"
#include "gxcie.h"
#include "gxdevice.h" /* for gxcmap.h */
#include "gxcmap.h"
#include "gzstate.h"
#include "gsicc.h"
/*
* Define whether to optimize the CIE mapping process by combining steps.
* This should only be disabled (commented out) for debugging.
*/
#define OPTIMIZE_CIE_MAPPING
/* Forward references */
static int cie_joint_caches_init(gx_cie_joint_caches *,
const gs_cie_common *,
gs_cie_render *);
static void cie_joint_caches_complete(gx_cie_joint_caches *,
const gs_cie_common *,
const gs_cie_abc *,
const gs_cie_render *);
static void cie_cache_restrict(cie_cache_floats *, const gs_range *);
static void cie_invert3(const gs_matrix3 *, gs_matrix3 *);
static void cie_matrix_init(gs_matrix3 *);
/* Allocator structure types */
private_st_joint_caches();
extern_st(st_gs_gstate);
#define RESTRICTED_INDEX(v, n, itemp)\
((uint)(itemp = (int)(v)) >= (n) ?\
(itemp < 0 ? 0 : (n) - 1) : itemp)
/* Define cache interpolation threshold values. */
#ifdef CIE_CACHE_INTERPOLATE
# ifdef CIE_INTERPOLATE_THRESHOLD
# define CACHE_THRESHOLD CIE_INTERPOLATE_THRESHOLD
# else
# define CACHE_THRESHOLD 0 /* always interpolate */
# endif
#else
# define CACHE_THRESHOLD 1.0e6 /* never interpolate */
#endif
#ifdef CIE_RENDER_TABLE_INTERPOLATE
# define RENDER_TABLE_THRESHOLD 0
#else
# define RENDER_TABLE_THRESHOLD 1.0e6
#endif
/*
* Determine whether a function is a linear transformation of the form
* f(x) = scale * x + origin.
*/
static bool
cache_is_linear(cie_linear_params_t *params, const cie_cache_floats *pcf)
{
double origin = pcf->values[0];
double diff = pcf->values[countof(pcf->values) - 1] - origin;
double scale = diff / (countof(pcf->values) - 1);
int i;
double test = origin + scale;
for (i = 1; i < countof(pcf->values) - 1; ++i, test += scale)
if (fabs(pcf->values[i] - test) >= 0.5 / countof(pcf->values))
return (params->is_linear = false);
params->origin = origin - pcf->params.base;
params->scale =
diff * pcf->params.factor / (countof(pcf->values) - 1);
return (params->is_linear = true);
}
static void
cache_set_linear(cie_cache_floats *pcf)
{
if (pcf->params.is_identity) {
if_debug1('c', "[c]is_linear("PRI_INTPTR") = true (is_identity)\n",
(intptr_t)pcf);
pcf->params.linear.is_linear = true;
pcf->params.linear.origin = 0;
pcf->params.linear.scale = 1;
} else if (cache_is_linear(&pcf->params.linear, pcf)) {
if (pcf->params.linear.origin == 0 &&
fabs(pcf->params.linear.scale - 1) < 0.00001)
pcf->params.is_identity = true;
if_debug4('c',
"[c]is_linear("PRI_INTPTR") = true, origin = %g, scale = %g%s\n",
(intptr_t)pcf, pcf->params.linear.origin,
pcf->params.linear.scale,
(pcf->params.is_identity ? " (=> is_identity)" : ""));
}
#ifdef DEBUG
else
if_debug1('c', "[c]linear("PRI_INTPTR") = false\n", (intptr_t)pcf);
#endif
}
static void
cache3_set_linear(gx_cie_vector_cache3_t *pvc)
{
cache_set_linear(&pvc->caches[0].floats);
cache_set_linear(&pvc->caches[1].floats);
cache_set_linear(&pvc->caches[2].floats);
}
#ifdef DEBUG
static void
if_debug_vector3(const char *str, const gs_vector3 *vec)
{
if_debug4('c', "%s[%g %g %g]\n", str, vec->u, vec->v, vec->w);
}
static void
if_debug_matrix3(const char *str, const gs_matrix3 *mat)
{
if_debug10('c', "%s [%g %g %g] [%g %g %g] [%g %g %g]\n", str,
mat->cu.u, mat->cu.v, mat->cu.w,
mat->cv.u, mat->cv.v, mat->cv.w,
mat->cw.u, mat->cw.v, mat->cw.w);
}
#else
# define if_debug_vector3(str, vec) DO_NOTHING
# define if_debug_matrix3(str, mat) DO_NOTHING
#endif
/* ------ Default values for CIE dictionary elements ------ */
/* Default transformation procedures. */
float
a_identity(double in, const gs_cie_a * pcie)
{
return in;
}
static float
a_from_cache(double in, const gs_cie_a * pcie)
{
return gs_cie_cached_value(in, &pcie->caches.DecodeA.floats);
}
float
abc_identity(double in, const gs_cie_abc * pcie)
{
return in;
}
static float
abc_from_cache_0(double in, const gs_cie_abc * pcie)
{
return gs_cie_cached_value(in, &pcie->caches.DecodeABC.caches[0].floats);
}
static float
abc_from_cache_1(double in, const gs_cie_abc * pcie)
{
return gs_cie_cached_value(in, &pcie->caches.DecodeABC.caches[1].floats);
}
static float
abc_from_cache_2(double in, const gs_cie_abc * pcie)
{
return gs_cie_cached_value(in, &pcie->caches.DecodeABC.caches[2].floats);
}
static float
def_identity(double in, const gs_cie_def * pcie)
{
return in;
}
static float
def_from_cache_0(double in, const gs_cie_def * pcie)
{
return gs_cie_cached_value(in, &pcie->caches_def.DecodeDEF[0].floats);
}
static float
def_from_cache_1(double in, const gs_cie_def * pcie)
{
return gs_cie_cached_value(in, &pcie->caches_def.DecodeDEF[1].floats);
}
static float
def_from_cache_2(double in, const gs_cie_def * pcie)
{
return gs_cie_cached_value(in, &pcie->caches_def.DecodeDEF[2].floats);
}
static float
defg_identity(double in, const gs_cie_defg * pcie)
{
return in;
}
static float
defg_from_cache_0(double in, const gs_cie_defg * pcie)
{
return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[0].floats);
}
static float
defg_from_cache_1(double in, const gs_cie_defg * pcie)
{
return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[1].floats);
}
static float
defg_from_cache_2(double in, const gs_cie_defg * pcie)
{
return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[2].floats);
}
static float
defg_from_cache_3(double in, const gs_cie_defg * pcie)
{
return gs_cie_cached_value(in, &pcie->caches_defg.DecodeDEFG[3].floats);
}
float
common_identity(double in, const gs_cie_common * pcie)
{
return in;
}
static float
lmn_from_cache_0(double in, const gs_cie_common * pcie)
{
return gs_cie_cached_value(in, &pcie->caches.DecodeLMN[0].floats);
}
static float
lmn_from_cache_1(double in, const gs_cie_common * pcie)
{
return gs_cie_cached_value(in, &pcie->caches.DecodeLMN[1].floats);
}
static float
lmn_from_cache_2(double in, const gs_cie_common * pcie)
{
return gs_cie_cached_value(in, &pcie->caches.DecodeLMN[2].floats);
}
/* Transformation procedures for accessing an already-loaded cache. */
float
gs_cie_cached_value(double in, const cie_cache_floats *pcache)
{
/*
* We need to get the same results when we sample an already-loaded
* cache, so we need to round the index just a tiny bit.
*/
int index =
(int)((in - pcache->params.base) * pcache->params.factor + 0.0001);
CIE_CLAMP_INDEX(index);
return pcache->values[index];
}
/* Default vectors and matrices. */
const gs_range3 Range3_default = {
{ {0, 1}, {0, 1}, {0, 1} }
};
const gs_range4 Range4_default = {
{ {0, 1}, {0, 1}, {0, 1}, {0, 1} }
};
const gs_cie_defg_proc4 DecodeDEFG_default = {
{defg_identity, defg_identity, defg_identity, defg_identity}
};
const gs_cie_defg_proc4 DecodeDEFG_from_cache = {
{defg_from_cache_0, defg_from_cache_1, defg_from_cache_2, defg_from_cache_3}
};
const gs_cie_def_proc3 DecodeDEF_default = {
{def_identity, def_identity, def_identity}
};
const gs_cie_def_proc3 DecodeDEF_from_cache = {
{def_from_cache_0, def_from_cache_1, def_from_cache_2}
};
const gs_cie_abc_proc3 DecodeABC_default = {
{abc_identity, abc_identity, abc_identity}
};
const gs_cie_abc_proc3 DecodeABC_from_cache = {
{abc_from_cache_0, abc_from_cache_1, abc_from_cache_2}
};
const gs_cie_common_proc3 DecodeLMN_default = {
{common_identity, common_identity, common_identity}
};
const gs_cie_common_proc3 DecodeLMN_from_cache = {
{lmn_from_cache_0, lmn_from_cache_1, lmn_from_cache_2}
};
const gs_matrix3 Matrix3_default = {
{1, 0, 0},
{0, 1, 0},
{0, 0, 1},
1 /*true */
};
const gs_range RangeA_default = {0, 1};
const gs_cie_a_proc DecodeA_default = a_identity;
const gs_cie_a_proc DecodeA_from_cache = a_from_cache;
const gs_vector3 MatrixA_default = {1, 1, 1};
const gs_vector3 BlackPoint_default = {0, 0, 0};
/* Initialize a CIE color. */
/* This only happens on setcolorspace. */
void
gx_init_CIE(gs_client_color * pcc, const gs_color_space * pcs)
{
gx_init_paint_4(pcc, pcs);
/* (0...) may not be within the range of allowable values. */
(*pcs->type->restrict_color)(pcc, pcs);
}
/* Restrict CIE colors. */
static inline void
cie_restrict(float *pv, const gs_range *range)
{
if (*pv <= range->rmin)
*pv = range->rmin;
else if (*pv >= range->rmax)
*pv = range->rmax;
}
void
gx_restrict_CIEDEFG(gs_client_color * pcc, const gs_color_space * pcs)
{
const gs_cie_defg *pcie = pcs->params.defg;
cie_restrict(&pcc->paint.values[0], &pcie->RangeDEFG.ranges[0]);
cie_restrict(&pcc->paint.values[1], &pcie->RangeDEFG.ranges[1]);
cie_restrict(&pcc->paint.values[2], &pcie->RangeDEFG.ranges[2]);
cie_restrict(&pcc->paint.values[3], &pcie->RangeDEFG.ranges[3]);
}
void
gx_restrict_CIEDEF(gs_client_color * pcc, const gs_color_space * pcs)
{
const gs_cie_def *pcie = pcs->params.def;
cie_restrict(&pcc->paint.values[0], &pcie->RangeDEF.ranges[0]);
cie_restrict(&pcc->paint.values[1], &pcie->RangeDEF.ranges[1]);
cie_restrict(&pcc->paint.values[2], &pcie->RangeDEF.ranges[2]);
}
void
gx_restrict_CIEABC(gs_client_color * pcc, const gs_color_space * pcs)
{
const gs_cie_abc *pcie = pcs->params.abc;
cie_restrict(&pcc->paint.values[0], &pcie->RangeABC.ranges[0]);
cie_restrict(&pcc->paint.values[1], &pcie->RangeABC.ranges[1]);
cie_restrict(&pcc->paint.values[2], &pcie->RangeABC.ranges[2]);
}
void
gx_restrict_CIEA(gs_client_color * pcc, const gs_color_space * pcs)
{
const gs_cie_a *pcie = pcs->params.a;
cie_restrict(&pcc->paint.values[0], &pcie->RangeA);
}
/* ================ Table setup ================ */
/* ------ Install a CIE color space ------ */
static void cie_cache_mult(gx_cie_vector_cache *, const gs_vector3 *,
const cie_cache_floats *, double);
static bool cie_cache_mult3(gx_cie_vector_cache3_t *,
const gs_matrix3 *, double);
int
gx_install_cie_abc(gs_cie_abc *pcie, gs_gstate * pgs)
{
if_debug_matrix3("[c]CIE MatrixABC =", &pcie->MatrixABC);
cie_matrix_init(&pcie->MatrixABC);
CIE_LOAD_CACHE_BODY(pcie->caches.DecodeABC.caches, pcie->RangeABC.ranges,
&pcie->DecodeABC, DecodeABC_default, pcie,
"DecodeABC");
gx_cie_load_common_cache(&pcie->common, pgs);
gs_cie_abc_complete(pcie);
return gs_cie_cs_complete(pgs, true);
}
int
gx_install_CIEDEFG(gs_color_space * pcs, gs_gstate * pgs)
{
gs_cie_defg *pcie = pcs->params.defg;
CIE_LOAD_CACHE_BODY(pcie->caches_defg.DecodeDEFG, pcie->RangeDEFG.ranges,
&pcie->DecodeDEFG, DecodeDEFG_default, pcie,
"DecodeDEFG");
return gx_install_cie_abc((gs_cie_abc *)pcie, pgs);
}
int
gx_install_CIEDEF(gs_color_space * pcs, gs_gstate * pgs)
{
gs_cie_def *pcie = pcs->params.def;
CIE_LOAD_CACHE_BODY(pcie->caches_def.DecodeDEF, pcie->RangeDEF.ranges,
&pcie->DecodeDEF, DecodeDEF_default, pcie,
"DecodeDEF");
return gx_install_cie_abc((gs_cie_abc *)pcie, pgs);
}
int
gx_install_CIEABC(gs_color_space * pcs, gs_gstate * pgs)
{
return gx_install_cie_abc(pcs->params.abc, pgs);
}
int
gx_install_CIEA(gs_color_space * pcs, gs_gstate * pgs)
{
gs_cie_a *pcie = pcs->params.a;
gs_sample_loop_params_t lp;
int i;
gs_cie_cache_init(&pcie->caches.DecodeA.floats.params, &lp,
&pcie->RangeA, "DecodeA");
for (i = 0; i <= lp.N; ++i) {
float in = SAMPLE_LOOP_VALUE(i, lp);
pcie->caches.DecodeA.floats.values[i] = (*pcie->DecodeA)(in, pcie);
if_debug3m('C', pgs->memory, "[C]DecodeA[%d] = %g => %g\n",
i, in, pcie->caches.DecodeA.floats.values[i]);
}
gx_cie_load_common_cache(&pcie->common, pgs);
gs_cie_a_complete(pcie);
return gs_cie_cs_complete(pgs, true);
}
/* Load the common caches when installing the color space. */
/* This routine is exported for the benefit of gsicc.c */
void
gx_cie_load_common_cache(gs_cie_common * pcie, gs_gstate * pgs)
{
if_debug_matrix3("[c]CIE MatrixLMN =", &pcie->MatrixLMN);
cie_matrix_init(&pcie->MatrixLMN);
CIE_LOAD_CACHE_BODY(pcie->caches.DecodeLMN, pcie->RangeLMN.ranges,
&pcie->DecodeLMN, DecodeLMN_default, pcie,
"DecodeLMN");
}
/* Complete loading the common caches. */
/* This routine is exported for the benefit of gsicc.c */
void
gx_cie_common_complete(gs_cie_common *pcie)
{
int i;
for (i = 0; i < 3; ++i)
cache_set_linear(&pcie->caches.DecodeLMN[i].floats);
}
/*
* Restrict the DecodeDEF[G] cache according to RangeHIJ[K], and scale to
* the dimensions of Table.
*/
static void
gs_cie_defx_scale(float *values, const gs_range *range, int dim)
{
double scale = (dim - 1.0) / (range->rmax - range->rmin);
int i;
for (i = 0; i < gx_cie_cache_size; ++i) {
float value = values[i];
values[i] =
(value <= range->rmin ? 0 :
value >= range->rmax ? dim - 1 :
(value - range->rmin) * scale);
}
}
/* Complete loading a CIEBasedDEFG color space. */
/* This routine is NOT idempotent. */
void
gs_cie_defg_complete(gs_cie_defg * pcie)
{
int j;
for (j = 0; j < 4; ++j)
gs_cie_defx_scale(pcie->caches_defg.DecodeDEFG[j].floats.values,
&pcie->RangeHIJK.ranges[j], pcie->Table.dims[j]);
gs_cie_abc_complete((gs_cie_abc *)pcie);
}
/* Complete loading a CIEBasedDEF color space. */
/* This routine is NOT idempotent. */
void
gs_cie_def_complete(gs_cie_def * pcie)
{
int j;
for (j = 0; j < 3; ++j)
gs_cie_defx_scale(pcie->caches_def.DecodeDEF[j].floats.values,
&pcie->RangeHIJ.ranges[j], pcie->Table.dims[j]);
gs_cie_abc_complete((gs_cie_abc *)pcie);
}
/* Complete loading a CIEBasedABC color space. */
/* This routine is idempotent. */
void
gs_cie_abc_complete(gs_cie_abc * pcie)
{
cache3_set_linear(&pcie->caches.DecodeABC);
pcie->caches.skipABC =
cie_cache_mult3(&pcie->caches.DecodeABC, &pcie->MatrixABC,
CACHE_THRESHOLD);
gx_cie_common_complete((gs_cie_common *)pcie);
}
/* Complete loading a CIEBasedA color space. */
/* This routine is idempotent. */
void
gs_cie_a_complete(gs_cie_a * pcie)
{
cie_cache_mult(&pcie->caches.DecodeA, &pcie->MatrixA,
&pcie->caches.DecodeA.floats,
CACHE_THRESHOLD);
cache_set_linear(&pcie->caches.DecodeA.floats);
gx_cie_common_complete((gs_cie_common *)pcie);
}
/*
* Set the ranges where interpolation is required in a vector cache.
* This procedure is idempotent.
*/
typedef struct cie_cache_range_temp_s {
cie_cached_value prev;
int imin, imax;
} cie_cache_range_temp_t;
static inline void
check_interpolation_required(cie_cache_range_temp_t *pccr,
cie_cached_value cur, int i, double threshold)
{
cie_cached_value prev = pccr->prev;
if (cie_cached_abs(cur - prev) > threshold * min(cie_cached_abs(prev), cie_cached_abs(cur))) {
if (i - 1 < pccr->imin)
pccr->imin = i - 1;
if (i > pccr->imax)
pccr->imax = i;
}
pccr->prev = cur;
}
static void
cie_cache_set_interpolation(gx_cie_vector_cache *pcache, double threshold)
{
cie_cached_value base = pcache->vecs.params.base;
cie_cached_value factor = pcache->vecs.params.factor;
cie_cache_range_temp_t temp[3];
int i, j;
for (j = 0; j < 3; ++j)
temp[j].imin = gx_cie_cache_size, temp[j].imax = -1;
temp[0].prev = pcache->vecs.values[0].u;
temp[1].prev = pcache->vecs.values[0].v;
temp[2].prev = pcache->vecs.values[0].w;
for (i = 0; i < gx_cie_cache_size; ++i) {
check_interpolation_required(&temp[0], pcache->vecs.values[i].u, i,
threshold);
check_interpolation_required(&temp[1], pcache->vecs.values[i].v, i,
threshold);
check_interpolation_required(&temp[2], pcache->vecs.values[i].w, i,
threshold);
}
for (j = 0; j < 3; ++j) {
pcache->vecs.params.interpolation_ranges[j].rmin =
base + (cie_cached_value)((double)temp[j].imin / factor);
pcache->vecs.params.interpolation_ranges[j].rmax =
base + (cie_cached_value)((double)temp[j].imax / factor);
if_debug3('c', "[c]interpolation_ranges[%d] = %g, %g\n", j,
cie_cached2float(pcache->vecs.params.interpolation_ranges[j].rmin),
cie_cached2float(pcache->vecs.params.interpolation_ranges[j].rmax));
}
}
/*
* Convert a scalar cache to a vector cache by multiplying the scalar
* values by a vector. Also set the range where interpolation is needed.
* This procedure is idempotent.
*/
static void
cie_cache_mult(gx_cie_vector_cache * pcache, const gs_vector3 * pvec,
const cie_cache_floats * pcf, double threshold)
{
float u = pvec->u, v = pvec->v, w = pvec->w;
int i;
pcache->vecs.params.base = float2cie_cached(pcf->params.base);
pcache->vecs.params.factor = float2cie_cached(pcf->params.factor);
pcache->vecs.params.limit =
float2cie_cached((gx_cie_cache_size - 1) / pcf->params.factor +
pcf->params.base);
for (i = 0; i < gx_cie_cache_size; ++i) {
float f = pcf->values[i];
pcache->vecs.values[i].u = float2cie_cached(f * u);
pcache->vecs.values[i].v = float2cie_cached(f * v);
pcache->vecs.values[i].w = float2cie_cached(f * w);
}
cie_cache_set_interpolation(pcache, threshold);
}
/*
* Set the interpolation ranges in a 3-vector cache, based on the ranges in
* the individual vector caches. This procedure is idempotent.
*/
static void
cie_cache3_set_interpolation(gx_cie_vector_cache3_t * pvc)
{
int j, k;
/* Iterate over output components. */
for (j = 0; j < 3; ++j) {
/* Iterate over sub-caches. */
cie_interpolation_range_t *p =
&pvc->caches[0].vecs.params.interpolation_ranges[j];
cie_cached_value rmin = p->rmin, rmax = p->rmax;
for (k = 1; k < 3; ++k) {
p = &pvc->caches[k].vecs.params.interpolation_ranges[j];
rmin = min(rmin, p->rmin), rmax = max(rmax, p->rmax);
}
pvc->interpolation_ranges[j].rmin = rmin;
pvc->interpolation_ranges[j].rmax = rmax;
if_debug3('c', "[c]Merged interpolation_ranges[%d] = %g, %g\n",
j, rmin, rmax);
}
}
/*
* Convert 3 scalar caches to vector caches by multiplying by a matrix.
* Return true iff the resulting cache is an identity transformation.
* This procedure is idempotent.
*/
static bool
cie_cache_mult3(gx_cie_vector_cache3_t * pvc, const gs_matrix3 * pmat,
double threshold)
{
cie_cache_mult(&pvc->caches[0], &pmat->cu, &pvc->caches[0].floats, threshold);
cie_cache_mult(&pvc->caches[1], &pmat->cv, &pvc->caches[1].floats, threshold);
cie_cache_mult(&pvc->caches[2], &pmat->cw, &pvc->caches[2].floats, threshold);
cie_cache3_set_interpolation(pvc);
return pmat->is_identity & pvc->caches[0].floats.params.is_identity &
pvc->caches[1].floats.params.is_identity &
pvc->caches[2].floats.params.is_identity;
}
/* ------ Install a rendering dictionary ------ */
bool
vector_equal(const gs_vector3 *p1, const gs_vector3 *p2)
{
if (p1->u != p2->u)
return false;
if (p1->v != p2->v)
return false;
if (p1->w != p2->w)
return false;
return true;
}
bool
matrix_equal(const gs_matrix3 *p1, const gs_matrix3 *p2)
{
if (p1->is_identity != p2->is_identity)
return false;
if (!vector_equal(&(p1->cu), &(p2->cu)))
return false;
if (!vector_equal(&(p1->cv), &(p2->cv)))
return false;
if (!vector_equal(&(p1->cw), &(p2->cw)))
return false;
return true;
}
static bool
transform_equal(const gs_cie_transform_proc3 *p1, const gs_cie_transform_proc3 *p2)
{
if (p1->proc != p2->proc)
return false;
if (p1->proc_data.size != p2->proc_data.size)
return false;
if (memcmp(p1->proc_data.data, p2->proc_data.data, p1->proc_data.size) != 0)
return false;
if (p1->driver_name != p2->driver_name)
return false;
if (p1->proc_name != p2->proc_name)
return false;
return true;
}
bool
range_equal(const gs_range3 *p1, const gs_range3 *p2)
{
int k;
for (k = 0; k < 3; k++) {
if (p1->ranges[k].rmax != p2->ranges[k].rmax)
return false;
if (p1->ranges[k].rmin != p2->ranges[k].rmin)
return false;
}
return true;
}
/* setcolorrendering */
int
gs_setcolorrendering(gs_gstate * pgs, gs_cie_render * pcrd)
{
int code = gs_cie_render_complete(pcrd);
const gs_cie_render *pcrd_old = pgs->cie_render;
bool joint_ok;
if (code < 0)
return code;
if (pcrd_old != 0 && pcrd->id == pcrd_old->id)
return 0; /* detect needless reselecting */
joint_ok =
pcrd_old != 0 &&
vector_equal(&pcrd->points.WhitePoint, &pcrd_old->points.WhitePoint) &&
vector_equal(&pcrd->points.BlackPoint, &pcrd_old->points.BlackPoint) &&
matrix_equal(&pcrd->MatrixPQR, &pcrd_old->MatrixPQR) &&
range_equal(&pcrd->RangePQR, &pcrd_old->RangePQR) &&
transform_equal(&pcrd->TransformPQR, &pcrd_old->TransformPQR);
rc_assign(pgs->cie_render, pcrd, "gs_setcolorrendering");
/* Initialize the joint caches if needed. */
if (!joint_ok)
code = gs_cie_cs_complete(pgs, true);
gx_unset_dev_color(pgs);
return code;
}
/* currentcolorrendering */
const gs_cie_render *
gs_currentcolorrendering(const gs_gstate * pgs)
{
return pgs->cie_render;
}
/* Unshare (allocating if necessary) the joint caches. */
gx_cie_joint_caches *
gx_unshare_cie_caches(gs_gstate * pgs)
{
gx_cie_joint_caches *pjc = pgs->cie_joint_caches;
rc_unshare_struct(pgs->cie_joint_caches, gx_cie_joint_caches,
&st_joint_caches, pgs->memory,
return 0, "gx_unshare_cie_caches");
if (pgs->cie_joint_caches != pjc) {
pjc = pgs->cie_joint_caches;
pjc->cspace_id = pjc->render_id = gs_no_id;
pjc->id_status = pjc->status = CIE_JC_STATUS_BUILT;
}
return pjc;
}
gx_cie_joint_caches *
gx_get_cie_caches_ref(gs_gstate * pgs, gs_memory_t * mem)
{
gx_cie_joint_caches *pjc = pgs->cie_joint_caches;
/* Take a reference here, to allow for the one that
* rc_unshare_struct might drop if it has to copy it.
* Whatever happens we will have taken 1 net new
* reference which we return to the caller. */
rc_increment(pgs->cie_joint_caches);
rc_unshare_struct(pjc, gx_cie_joint_caches,
&st_joint_caches, mem,
return NULL, "gx_unshare_cie_caches");
return pjc;
}
/* Compute the parameters for loading a cache, setting base and factor. */
/* This procedure is idempotent. */
void
gs_cie_cache_init(cie_cache_params * pcache, gs_sample_loop_params_t * pslp,
const gs_range * domain, client_name_t cname)
{
/*
We need to map the values in the range [domain->rmin..domain->rmax].
However, if rmin < 0 < rmax and the function is non-linear, this can
lead to anomalies at zero, which is the default value for CIE colors.
The "correct" way to approach this is to run the mapping functions on
demand, but we don't want to deal with the complexities of the
callbacks this would involve (especially in the middle of rendering
images); instead, we adjust the range so that zero maps precisely to a
cache slot. Define:
A = domain->rmin;
B = domain->rmax;
N = gx_cie_cache_size - 1;
R = B - A;
h(v) = N * (v - A) / R; // the index of v in the cache
X = h(0).
If X is not an integer, we can decrease A and/increase B to make it
one. Let A' and B' be the adjusted values of A and B respectively,
and let K be the integer derived from X (either floor(X) or ceil(X)).
Define
f(K) = (K * B' + (N - K) * A') / N).
We want f(K) = 0. This occurs precisely when, for any real number
C != 0,
A' = -K * C;
B' = (N - K) * C.
In order to ensure A' <= A and B' >= B, we require
C >= -A / K;
C >= B / (N - K).
Since A' and B' must be exactly representable as floats, we round C
upward to ensure that it has no more than M mantissa bits, where
M = ARCH_FLOAT_MANTISSA_BITS - ceil(log2(N)).
*/
float A = domain->rmin, B = domain->rmax;
double R = B - A, delta;
#define NN (gx_cie_cache_size - 1) /* 'N' is a member name, see end of proc */
#define N NN
#define CEIL_LOG2_N CIE_LOG2_CACHE_SIZE
/* Adjust the range if necessary. */
if (A < 0 && B >= 0) {
const double X = -N * A / R; /* know X > 0 */
/* Choose K to minimize range expansion. */
const int K = (int)(A + B < 0 ? floor(X) : ceil(X)); /* know 0 < K < N */
const double Ca = -A / K, Cb = B / (N - K); /* know Ca, Cb > 0 */
double C = max(Ca, Cb); /* know C > 0 */
const int M = ARCH_FLOAT_MANTISSA_BITS - CEIL_LOG2_N;
int cexp;
const double cfrac = frexp(C, &cexp);
if_debug4('c', "[c]adjusting cache_init(%8g, %8g), X = %8g, K = %d:\n",
A, B, X, K);
/* Round C to no more than M significant bits. See above. */
C = ldexp(ceil(ldexp(cfrac, M)), cexp - M);
/* Finally, compute A' and B'. */
A = -K * C;
B = (N - K) * C;
if_debug2('c', "[c] => %8g, %8g\n", A, B);
R = B - A;
}
delta = R / N;
#ifdef CIE_CACHE_INTERPOLATE
pcache->base = A; /* no rounding */
#else
pcache->base = A - delta / 2; /* so lookup will round */
#endif
/*
* If size of the domain is zero, then use 1.0 as the scaling
* factor. This prevents divide by zero errors in later calculations.
* This should only occurs with zero matrices. It does occur with
* Genoa test file 050-01.ps.
*/
pcache->factor = (any_abs(delta) < 1e-30 ? 1.0 : N / R);
if_debug4('c', "[c]cache %s "PRI_INTPTR" base=%g, factor=%g\n",
(const char *)cname, (intptr_t)pcache,
pcache->base, pcache->factor);
pslp->A = A;
pslp->B = B;
#undef N
pslp->N = NN;
#undef NN
}
/* ------ Complete a rendering structure ------ */
/*
* Compute the derived values in a CRD that don't involve the cached
* procedure values. This procedure is idempotent.
*/
static void cie_transform_range3(const gs_range3 *, const gs_matrix3 *,
gs_range3 *);
int
gs_cie_render_init(gs_cie_render * pcrd)
{
gs_matrix3 PQR_inverse;
if (pcrd->status >= CIE_RENDER_STATUS_INITED)
return 0; /* init already done */
if_debug_matrix3("[c]CRD MatrixLMN =", &pcrd->MatrixLMN);
cie_matrix_init(&pcrd->MatrixLMN);
if_debug_matrix3("[c]CRD MatrixABC =", &pcrd->MatrixABC);
cie_matrix_init(&pcrd->MatrixABC);
if_debug_matrix3("[c]CRD MatrixPQR =", &pcrd->MatrixPQR);
cie_matrix_init(&pcrd->MatrixPQR);
cie_invert3(&pcrd->MatrixPQR, &PQR_inverse);
cie_matrix_mult3(&pcrd->MatrixLMN, &PQR_inverse,
&pcrd->MatrixPQR_inverse_LMN);
cie_transform_range3(&pcrd->RangePQR, &pcrd->MatrixPQR_inverse_LMN,
&pcrd->DomainLMN);
cie_transform_range3(&pcrd->RangeLMN, &pcrd->MatrixABC,
&pcrd->DomainABC);
cie_mult3(&pcrd->points.WhitePoint, &pcrd->MatrixPQR, &pcrd->wdpqr);
cie_mult3(&pcrd->points.BlackPoint, &pcrd->MatrixPQR, &pcrd->bdpqr);
pcrd->status = CIE_RENDER_STATUS_INITED;
return 0;
}
/*
* Sample the EncodeLMN, EncodeABC, and RenderTableT CRD procedures, and
* load the caches. This procedure is idempotent.
*/
int
gs_cie_render_sample(gs_cie_render * pcrd)
{
int code;
if (pcrd->status >= CIE_RENDER_STATUS_SAMPLED)
return 0; /* sampling already done */
code = gs_cie_render_init(pcrd);
if (code < 0)
return code;
CIE_LOAD_CACHE_BODY(pcrd->caches.EncodeLMN.caches, pcrd->DomainLMN.ranges,
&pcrd->EncodeLMN, Encode_default, pcrd, "EncodeLMN");
cache3_set_linear(&pcrd->caches.EncodeLMN);
CIE_LOAD_CACHE_BODY(pcrd->caches.EncodeABC, pcrd->DomainABC.ranges,
&pcrd->EncodeABC, Encode_default, pcrd, "EncodeABC");
if (pcrd->RenderTable.lookup.table != 0) {
int i, j, m = pcrd->RenderTable.lookup.m;
gs_sample_loop_params_t lp;
bool is_identity = true;
for (j = 0; j < m; j++) {
gs_cie_cache_init(&pcrd->caches.RenderTableT[j].fracs.params,
&lp, &Range3_default.ranges[0],
"RenderTableT");
is_identity &= pcrd->RenderTable.T.procs[j] ==
RenderTableT_default.procs[j];
}
pcrd->caches.RenderTableT_is_identity = is_identity;
/*
* Unfortunately, we defined the first argument of the RenderTable
* T procedures as being a byte, limiting the number of distinct
* cache entries to 256 rather than gx_cie_cache_size.
* We confine this decision to this loop, rather than propagating
* it to the procedures that use the cached data, so that we can
* change it more easily at some future time.
*/
for (i = 0; i < gx_cie_cache_size; i++) {
#if gx_cie_log2_cache_size >= 8
byte value = i >> (gx_cie_log2_cache_size - 8);
#else
byte value = (i << (8 - gx_cie_log2_cache_size)) +
(i >> (gx_cie_log2_cache_size * 2 - 8));
#endif
for (j = 0; j < m; j++) {
pcrd->caches.RenderTableT[j].fracs.values[i] =
(*pcrd->RenderTable.T.procs[j])(value, pcrd);
if_debug3('C', "[C]RenderTableT[%d,%d] = %g\n",
i, j,
frac2float(pcrd->caches.RenderTableT[j].fracs.values[i]));
}
}
}
pcrd->status = CIE_RENDER_STATUS_SAMPLED;
return 0;
}
/* Transform a set of ranges. */
static void
cie_transform_range(const gs_range3 * in, double mu, double mv, double mw,
gs_range * out)
{
float umin = mu * in->ranges[0].rmin, umax = mu * in->ranges[0].rmax;
float vmin = mv * in->ranges[1].rmin, vmax = mv * in->ranges[1].rmax;
float wmin = mw * in->ranges[2].rmin, wmax = mw * in->ranges[2].rmax;
float temp;
if (umin > umax)
temp = umin, umin = umax, umax = temp;
if (vmin > vmax)
temp = vmin, vmin = vmax, vmax = temp;
if (wmin > wmax)
temp = wmin, wmin = wmax, wmax = temp;
out->rmin = umin + vmin + wmin;
out->rmax = umax + vmax + wmax;
}
static void
cie_transform_range3(const gs_range3 * in, const gs_matrix3 * mat,
gs_range3 * out)
{
cie_transform_range(in, mat->cu.u, mat->cv.u, mat->cw.u,
&out->ranges[0]);
cie_transform_range(in, mat->cu.v, mat->cv.v, mat->cw.v,
&out->ranges[1]);
cie_transform_range(in, mat->cu.w, mat->cv.w, mat->cw.w,
&out->ranges[2]);
}
/*
* Finish preparing a CRD for installation, by restricting and/or
* transforming the cached procedure values.
* This procedure is idempotent.
*/
int
gs_cie_render_complete(gs_cie_render * pcrd)
{
int code;
if (pcrd->status >= CIE_RENDER_STATUS_COMPLETED)
return 0; /* completion already done */
code = gs_cie_render_sample(pcrd);
if (code < 0)
return code;
/*
* Since range restriction happens immediately after
* the cache lookup, we can save a step by restricting
* the values in the cache entries.
*
* If there is no lookup table, we want the final ABC values
* to be fracs; if there is a table, we want them to be
* appropriately scaled ints.
*/
pcrd->MatrixABCEncode = pcrd->MatrixABC;
{
int c;
double f;
for (c = 0; c < 3; c++) {
gx_cie_float_fixed_cache *pcache = &pcrd->caches.EncodeABC[c];
cie_cache_restrict(&pcrd->caches.EncodeLMN.caches[c].floats,
&pcrd->RangeLMN.ranges[c]);
cie_cache_restrict(&pcrd->caches.EncodeABC[c].floats,
&pcrd->RangeABC.ranges[c]);
if (pcrd->RenderTable.lookup.table == 0) {
cie_cache_restrict(&pcache->floats,
&Range3_default.ranges[0]);
gs_cie_cache_to_fracs(&pcache->floats, &pcache->fixeds.fracs);
pcache->fixeds.fracs.params.is_identity = false;
} else {
int i;
int n = pcrd->RenderTable.lookup.dims[c];
#ifdef CIE_RENDER_TABLE_INTERPOLATE
# define SCALED_INDEX(f, n, itemp)\
RESTRICTED_INDEX(f * (1 << _cie_interpolate_bits),\
(n) << _cie_interpolate_bits, itemp)
#else
int m = pcrd->RenderTable.lookup.m;
int k =
(c == 0 ? 1 : c == 1 ?
m * pcrd->RenderTable.lookup.dims[2] : m);
# define SCALED_INDEX(f, n, itemp)\
(RESTRICTED_INDEX(f, n, itemp) * k)
#endif
const gs_range *prange = pcrd->RangeABC.ranges + c;
double scale = (n - 1) / (prange->rmax - prange->rmin);
for (i = 0; i < gx_cie_cache_size; ++i) {
float v =
(pcache->floats.values[i] - prange->rmin) * scale
#ifndef CIE_RENDER_TABLE_INTERPOLATE
+ 0.5
#endif
;
int itemp;
if_debug5('c',
"[c]cache[%d][%d] = %g => %g => %d\n",
c, i, pcache->floats.values[i], v,
SCALED_INDEX(v, n, itemp));
pcache->fixeds.ints.values[i] =
SCALED_INDEX(v, n, itemp);
}
pcache->fixeds.ints.params = pcache->floats.params;
pcache->fixeds.ints.params.is_identity = false;
#undef SCALED_INDEX
}
}
/* Fold the scaling of the EncodeABC cache index */
/* into MatrixABC. */
#define MABC(i, t)\
f = pcrd->caches.EncodeABC[i].floats.params.factor;\
pcrd->MatrixABCEncode.cu.t *= f;\
pcrd->MatrixABCEncode.cv.t *= f;\
pcrd->MatrixABCEncode.cw.t *= f;\
pcrd->EncodeABC_base[i] =\
float2cie_cached(pcrd->caches.EncodeABC[i].floats.params.base * f)
MABC(0, u);
MABC(1, v);
MABC(2, w);
#undef MABC
pcrd->MatrixABCEncode.is_identity = 0;
}
cie_cache_mult3(&pcrd->caches.EncodeLMN, &pcrd->MatrixABCEncode,
CACHE_THRESHOLD);
pcrd->status = CIE_RENDER_STATUS_COMPLETED;
return 0;
}
/* Apply a range restriction to a cache. */
static void
cie_cache_restrict(cie_cache_floats * pcache, const gs_range * prange)
{
int i;
for (i = 0; i < gx_cie_cache_size; i++) {
float v = pcache->values[i];
if (v < prange->rmin)
pcache->values[i] = prange->rmin;
else if (v > prange->rmax)
pcache->values[i] = prange->rmax;
}
}
/* Convert a cache from floats to fracs. */
/* Note that the two may be aliased. */
void
gs_cie_cache_to_fracs(const cie_cache_floats *pfloats, cie_cache_fracs *pfracs)
{
int i;
/* Loop from bottom to top so that we don't */
/* overwrite elements before they're used. */
for (i = 0; i < gx_cie_cache_size; ++i)
pfracs->values[i] = float2frac(pfloats->values[i]);
pfracs->params = pfloats->params;
}
/* ------ Fill in the joint cache ------ */
/* If the current color space is a CIE space, or has a CIE base space, */
/* return a pointer to the common part of the space; otherwise return 0. */
static const gs_cie_common *
cie_cs_common_abc(const gs_color_space *pcs_orig, const gs_cie_abc **ppabc)
{
const gs_color_space *pcs = pcs_orig;
*ppabc = 0;
do {
switch (pcs->type->index) {
case gs_color_space_index_CIEDEF:
*ppabc = (const gs_cie_abc *)pcs->params.def;
return &pcs->params.def->common;
case gs_color_space_index_CIEDEFG:
*ppabc = (const gs_cie_abc *)pcs->params.defg;
return &pcs->params.defg->common;
case gs_color_space_index_CIEABC:
*ppabc = pcs->params.abc;
return &pcs->params.abc->common;
case gs_color_space_index_CIEA:
return &pcs->params.a->common;
default:
pcs = gs_cspace_base_space(pcs);
break;
}
} while (pcs != 0);
return 0;
}
const gs_cie_common *
gs_cie_cs_common(const gs_gstate * pgs)
{
const gs_cie_abc *ignore_pabc;
return cie_cs_common_abc(gs_currentcolorspace_inline(pgs), &ignore_pabc);
}
/*
* Mark the joint caches as needing completion. This is done lazily,
* when a color is being mapped. However, make sure the joint caches
* exist now.
*/
int
gs_cie_cs_complete(gs_gstate * pgs, bool init)
{
gx_cie_joint_caches *pjc = gx_unshare_cie_caches(pgs);
if (pjc == 0)
return_error(gs_error_VMerror);
pjc->status = (init ? CIE_JC_STATUS_BUILT : CIE_JC_STATUS_INITED);
return 0;
}
/* Actually complete the joint caches. */
int
gs_cie_jc_complete(const gs_gstate *pgs, const gs_color_space *pcs)
{
const gs_cie_abc *pabc;
const gs_cie_common *common = cie_cs_common_abc(pcs, &pabc);
gs_cie_render *pcrd = pgs->cie_render;
gx_cie_joint_caches *pjc = pgs->cie_joint_caches;
if (pjc->cspace_id == pcs->id &&
pjc->render_id == pcrd->id)
pjc->status = pjc->id_status;
switch (pjc->status) {
case CIE_JC_STATUS_BUILT: {
int code = cie_joint_caches_init(pjc, common, pcrd);
if (code < 0)
return code;
}
/* falls through */
case CIE_JC_STATUS_INITED:
cie_joint_caches_complete(pjc, common, pabc, pcrd);
pjc->cspace_id = pcs->id;
pjc->render_id = pcrd->id;
pjc->id_status = pjc->status = CIE_JC_STATUS_COMPLETED;
/* falls through */
case CIE_JC_STATUS_COMPLETED:
break;
}
return 0;
}
/*
* Compute the source and destination WhitePoint and BlackPoint for
* the TransformPQR procedure.
*/
int
gs_cie_compute_points_sd(gx_cie_joint_caches *pjc,
const gs_cie_common * pcie,
const gs_cie_render * pcrd)
{
gs_cie_wbsd *pwbsd = &pjc->points_sd;
pwbsd->ws.xyz = pcie->points.WhitePoint;
cie_mult3(&pwbsd->ws.xyz, &pcrd->MatrixPQR, &pwbsd->ws.pqr);
pwbsd->bs.xyz = pcie->points.BlackPoint;
cie_mult3(&pwbsd->bs.xyz, &pcrd->MatrixPQR, &pwbsd->bs.pqr);
pwbsd->wd.xyz = pcrd->points.WhitePoint;
pwbsd->wd.pqr = pcrd->wdpqr;
pwbsd->bd.xyz = pcrd->points.BlackPoint;
pwbsd->bd.pqr = pcrd->bdpqr;
return 0;
}
/*
* Sample the TransformPQR procedure for the joint caches.
* This routine is idempotent.
*/
static int
cie_joint_caches_init(gx_cie_joint_caches * pjc,
const gs_cie_common * pcie,
gs_cie_render * pcrd)
{
bool is_identity;
int j;
gs_cie_compute_points_sd(pjc, pcie, pcrd);
/*
* If a client pre-loaded the cache, we can't adjust the range.
* ****** WRONG ******
*/
if (pcrd->TransformPQR.proc == TransformPQR_from_cache.proc)
return 0;
is_identity = pcrd->TransformPQR.proc == TransformPQR_default.proc;
for (j = 0; j < 3; j++) {
int i;
gs_sample_loop_params_t lp;
gs_cie_cache_init(&pjc->TransformPQR.caches[j].floats.params, &lp,
&pcrd->RangePQR.ranges[j], "TransformPQR");
for (i = 0; i <= lp.N; ++i) {
float in = SAMPLE_LOOP_VALUE(i, lp);
float out;
int code = (*pcrd->TransformPQR.proc)(j, in, &pjc->points_sd,
pcrd, &out);
if (code < 0)
return code;
pjc->TransformPQR.caches[j].floats.values[i] = out;
if_debug4('C', "[C]TransformPQR[%d,%d] = %g => %g\n",
j, i, in, out);
}
pjc->TransformPQR.caches[j].floats.params.is_identity = is_identity;
}
return 0;
}
/*
* Complete the loading of the joint caches.
* This routine is idempotent.
*/
static void
cie_joint_caches_complete(gx_cie_joint_caches * pjc,
const gs_cie_common * pcie,
const gs_cie_abc * pabc /* NULL if CIEA */,
const gs_cie_render * pcrd)
{
gs_matrix3 mat3, mat2;
gs_matrix3 MatrixLMN_PQR;
int j;
pjc->remap_finish = gx_cie_real_remap_finish;
/*
* We number the pipeline steps as follows:
* 1 - DecodeABC/MatrixABC
* 2 - DecodeLMN/MatrixLMN/MatrixPQR
* 3 - TransformPQR/MatrixPQR'/MatrixLMN
* 4 - EncodeLMN/MatrixABC
* 5 - EncodeABC, RenderTable (we don't do anything with this here)
* We work from back to front, combining steps where possible.
* Currently we only combine steps if a procedure is the identity
* transform, but we could do it whenever the procedure is linear.
* A project for another day....
*/
/* Step 4 */
#ifdef OPTIMIZE_CIE_MAPPING
if (pcrd->caches.EncodeLMN.caches[0].floats.params.is_identity &&
pcrd->caches.EncodeLMN.caches[1].floats.params.is_identity &&
pcrd->caches.EncodeLMN.caches[2].floats.params.is_identity
) {
/* Fold step 4 into step 3. */
if_debug0('c', "[c]EncodeLMN is identity, folding MatrixABC(Encode) into MatrixPQR'+LMN.\n");
cie_matrix_mult3(&pcrd->MatrixABCEncode, &pcrd->MatrixPQR_inverse_LMN,
&mat3);
pjc->skipEncodeLMN = true;
} else
#endif /* OPTIMIZE_CIE_MAPPING */
{
if_debug0('c', "[c]EncodeLMN is not identity.\n");
mat3 = pcrd->MatrixPQR_inverse_LMN;
pjc->skipEncodeLMN = false;
}
/* Step 3 */
cache3_set_linear(&pjc->TransformPQR);
cie_matrix_mult3(&pcrd->MatrixPQR, &pcie->MatrixLMN,
&MatrixLMN_PQR);
#ifdef OPTIMIZE_CIE_MAPPING
if (pjc->TransformPQR.caches[0].floats.params.is_identity &
pjc->TransformPQR.caches[1].floats.params.is_identity &
pjc->TransformPQR.caches[2].floats.params.is_identity
) {
/* Fold step 3 into step 2. */
if_debug0('c', "[c]TransformPQR is identity, folding MatrixPQR'+LMN into MatrixLMN+PQR.\n");
cie_matrix_mult3(&mat3, &MatrixLMN_PQR, &mat2);
pjc->skipPQR = true;
} else
#endif /* OPTIMIZE_CIE_MAPPING */
{
if_debug0('c', "[c]TransformPQR is not identity.\n");
mat2 = MatrixLMN_PQR;
for (j = 0; j < 3; j++) {
cie_cache_restrict(&pjc->TransformPQR.caches[j].floats,
&pcrd->RangePQR.ranges[j]);
}
cie_cache_mult3(&pjc->TransformPQR, &mat3, CACHE_THRESHOLD);
pjc->skipPQR = false;
}
/* Steps 2 & 1 */
#ifdef OPTIMIZE_CIE_MAPPING
if (pcie->caches.DecodeLMN[0].floats.params.is_identity &
pcie->caches.DecodeLMN[1].floats.params.is_identity &
pcie->caches.DecodeLMN[2].floats.params.is_identity
) {
if_debug0('c', "[c]DecodeLMN is identity, folding MatrixLMN+PQR into MatrixABC.\n");
if (!pabc) {
pjc->skipDecodeLMN = mat2.is_identity;
pjc->skipDecodeABC = false;
if (!pjc->skipDecodeLMN) {
for (j = 0; j < 3; j++) {
cie_cache_mult(&pjc->DecodeLMN.caches[j], &mat2.cu + j,
&pcie->caches.DecodeLMN[j].floats,
CACHE_THRESHOLD);
}
cie_cache3_set_interpolation(&pjc->DecodeLMN);
}
} else {
/*
* Fold step 2 into step 1. This is a little different because
* the data for step 1 are in the color space structure.
*/
gs_matrix3 mat1;
cie_matrix_mult3(&mat2, &pabc->MatrixABC, &mat1);
for (j = 0; j < 3; j++) {
cie_cache_mult(&pjc->DecodeLMN.caches[j], &mat1.cu + j,
&pabc->caches.DecodeABC.caches[j].floats,
CACHE_THRESHOLD);
}
cie_cache3_set_interpolation(&pjc->DecodeLMN);
pjc->skipDecodeLMN = false;
pjc->skipDecodeABC = true;
}
} else
#endif /* OPTIMIZE_CIE_MAPPING */
{
if_debug0('c', "[c]DecodeLMN is not identity.\n");
for (j = 0; j < 3; j++) {
cie_cache_mult(&pjc->DecodeLMN.caches[j], &mat2.cu + j,
&pcie->caches.DecodeLMN[j].floats,
CACHE_THRESHOLD);
}
cie_cache3_set_interpolation(&pjc->DecodeLMN);
pjc->skipDecodeLMN = false;
pjc->skipDecodeABC = pabc != 0 && pabc->caches.skipABC;
}
}
/*
* Initialize (just enough of) an gs_gstate so that "concretizing" colors
* using this gs_gstate will do only the CIE->XYZ mapping. This is a
* semi-hack for the PDF writer.
*/
int
gx_cie_to_xyz_alloc(gs_gstate **ppgs, const gs_color_space *pcs,
gs_memory_t *mem)
{
/*
* In addition to the gs_gstate itself, we need the joint caches.
*/
gs_gstate *pgs =
gs_alloc_struct(mem, gs_gstate, &st_gs_gstate,
"gx_cie_to_xyz_alloc(gs_gstate)");
gx_cie_joint_caches *pjc;
const gs_cie_abc *pabc;
const gs_cie_common *pcie = cie_cs_common_abc(pcs, &pabc);
int j;
if (pgs == 0)
return_error(gs_error_VMerror);
memset(pgs, 0, sizeof(*pgs)); /* mostly paranoia */
pgs->memory = mem;
GS_STATE_INIT_VALUES(pgs, 1.0);
gs_gstate_initialize(pgs, mem);
pjc = gs_alloc_struct(mem, gx_cie_joint_caches, &st_joint_caches,
"gx_cie_to_xyz_free(joint caches)");
if (pjc == 0) {
gs_free_object(mem, pgs, "gx_cie_to_xyz_alloc(gs_gstate)");
return_error(gs_error_VMerror);
}
rc_init(pjc, mem, 1);
/*
* Perform an abbreviated version of cie_joint_caches_complete.
* Don't bother with any optimizations.
*/
for (j = 0; j < 3; j++) {
cie_cache_mult(&pjc->DecodeLMN.caches[j], &pcie->MatrixLMN.cu + j,
&pcie->caches.DecodeLMN[j].floats,
CACHE_THRESHOLD);
}
cie_cache3_set_interpolation(&pjc->DecodeLMN);
pjc->skipDecodeLMN = false;
pjc->skipDecodeABC = pabc != 0 && pabc->caches.skipABC;
/* Mark the joint caches as completed. */
pjc->remap_finish = gx_cie_xyz_remap_finish;
pjc->cspace_id = pcs->id;
pjc->status = CIE_JC_STATUS_COMPLETED;
pgs->cie_joint_caches = pjc;
pgs->cie_to_xyz = true;
*ppgs = pgs;
return 0;
}
void
gx_cie_to_xyz_free(gs_gstate *pgs)
{
gs_memory_t *mem = pgs->memory;
rc_decrement(pgs->cie_joint_caches,"gx_cie_to_xyz_free");
/* Free up the ICC objects if created */ /* FIXME: does this need to be thread safe */
if (pgs->icc_link_cache != NULL) {
rc_decrement(pgs->icc_link_cache,"gx_cie_to_xyz_free");
}
if (pgs->icc_manager != NULL) {
rc_decrement(pgs->icc_manager,"gx_cie_to_xyz_free");
}
if (pgs->icc_profile_cache != NULL) {
rc_decrement(pgs->icc_profile_cache,"gx_cie_to_xyz_free");
}
gs_free_object(mem, pgs, "gx_cie_to_xyz_free(gs_gstate)");
}
/* ================ Utilities ================ */
/* Multiply a vector by a matrix. */
/* Note that we are computing M * V where v is a column vector. */
void
cie_mult3(const gs_vector3 * in, register const gs_matrix3 * mat,
gs_vector3 * out)
{
if_debug_vector3("[c]mult", in);
if_debug_matrix3(" *", mat);
{
float u = in->u, v = in->v, w = in->w;
out->u = (u * mat->cu.u) + (v * mat->cv.u) + (w * mat->cw.u);
out->v = (u * mat->cu.v) + (v * mat->cv.v) + (w * mat->cw.v);
out->w = (u * mat->cu.w) + (v * mat->cv.w) + (w * mat->cw.w);
}
if_debug_vector3(" =", out);
}
/*
* Multiply two matrices. Note that the composition of the transformations
* M1 followed by M2 is M2 * M1, not M1 * M2. (See gscie.h for details.)
*/
void
cie_matrix_mult3(const gs_matrix3 *ma, const gs_matrix3 *mb, gs_matrix3 *mc)
{
gs_matrix3 mprod;
gs_matrix3 *mp = (mc == ma || mc == mb ? &mprod : mc);
if_debug_matrix3("[c]matrix_mult", ma);
if_debug_matrix3(" *", mb);
cie_mult3(&mb->cu, ma, &mp->cu);
cie_mult3(&mb->cv, ma, &mp->cv);
cie_mult3(&mb->cw, ma, &mp->cw);
cie_matrix_init(mp);
if_debug_matrix3(" =", mp);
if (mp != mc)
*mc = *mp;
}
/*
* Transpose a 3x3 matrix. In and out can not be the same
*/
void
cie_matrix_transpose3(const gs_matrix3 *in, gs_matrix3 *out)
{
out->cu.u = in->cu.u;
out->cu.v = in->cv.u;
out->cu.w = in->cw.u;
out->cv.u = in->cu.v;
out->cv.v = in->cv.v;
out->cv.w = in->cw.v;
out->cw.u = in->cu.w;
out->cw.v = in->cv.w;
out->cw.w = in->cw.w;
}
/* Invert a matrix. */
/* The output must not be an alias for the input. */
static void
cie_invert3(const gs_matrix3 *in, gs_matrix3 *out)
{ /* This is a brute force algorithm; maybe there are better. */
/* We label the array elements */
/* [ A B C ] */
/* [ D E F ] */
/* [ G H I ] */
#define A cu.u
#define B cv.u
#define C cw.u
#define D cu.v
#define E cv.v
#define F cw.v
#define G cu.w
#define H cv.w
#define I cw.w
double coA = in->E * in->I - in->F * in->H;
double coB = in->F * in->G - in->D * in->I;
double coC = in->D * in->H - in->E * in->G;
double det = in->A * coA + in->B * coB + in->C * coC;
if_debug_matrix3("[c]invert", in);
out->A = coA / det;
out->D = coB / det;
out->G = coC / det;
out->B = (in->C * in->H - in->B * in->I) / det;
out->E = (in->A * in->I - in->C * in->G) / det;
out->H = (in->B * in->G - in->A * in->H) / det;
out->C = (in->B * in->F - in->C * in->E) / det;
out->F = (in->C * in->D - in->A * in->F) / det;
out->I = (in->A * in->E - in->B * in->D) / det;
if_debug_matrix3(" =", out);
#undef A
#undef B
#undef C
#undef D
#undef E
#undef F
#undef G
#undef H
#undef I
out->is_identity = in->is_identity;
}
/* Set the is_identity flag that accelerates multiplication. */
static void
cie_matrix_init(register gs_matrix3 * mat)
{
mat->is_identity =
mat->cu.u == 1.0 && is_fzero2(mat->cu.v, mat->cu.w) &&
mat->cv.v == 1.0 && is_fzero2(mat->cv.u, mat->cv.w) &&
mat->cw.w == 1.0 && is_fzero2(mat->cw.u, mat->cw.v);
}
bool
gx_color_space_needs_cie_caches(const gs_color_space * pcs)
{
switch (pcs->type->index) {
case gs_color_space_index_CIEDEFG:
case gs_color_space_index_CIEDEF:
case gs_color_space_index_CIEABC:
case gs_color_space_index_CIEA:
return true;
case gs_color_space_index_ICC:
return false;
case gs_color_space_index_DevicePixel:
case gs_color_space_index_DeviceN:
case gs_color_space_index_Separation:
case gs_color_space_index_Indexed:
case gs_color_space_index_Pattern:
return gx_color_space_needs_cie_caches(pcs->base_space);
default:
return false;
}
}
|