diff options
author | Mike Pagano <mpagano@gentoo.org> | 2020-02-14 18:33:59 -0500 |
---|---|---|
committer | Mike Pagano <mpagano@gentoo.org> | 2020-02-14 18:33:59 -0500 |
commit | 99e4cd48b7fc7ffe5e9689983a0f607689471d1a (patch) | |
tree | 9bf8c6d702e1928727fc9ee866010eead2ccac30 | |
parent | Linux patch 4.4.213 (diff) | |
download | linux-patches-99e4cd48b7fc7ffe5e9689983a0f607689471d1a.tar.gz linux-patches-99e4cd48b7fc7ffe5e9689983a0f607689471d1a.tar.bz2 linux-patches-99e4cd48b7fc7ffe5e9689983a0f607689471d1a.zip |
Linux patch 4.4.2144.4-215
Signed-off-by: Mike Pagano <mpagano@gentoo.org>
-rw-r--r-- | 0000_README | 4 | ||||
-rw-r--r-- | 1213_linux-4.4.214.patch | 11112 |
2 files changed, 11116 insertions, 0 deletions
diff --git a/0000_README b/0000_README index fb1c3ff9..a0335a4f 100644 --- a/0000_README +++ b/0000_README @@ -895,6 +895,10 @@ Patch: 1212_linux-4.4.213.patch From: http://www.kernel.org Desc: Linux 4.4.213 +Patch: 1213_linux-4.4.214.patch +From: http://www.kernel.org +Desc: Linux 4.4.214 + Patch: 1500_XATTR_USER_PREFIX.patch From: https://bugs.gentoo.org/show_bug.cgi?id=470644 Desc: Support for namespace user.pax.* on tmpfs. diff --git a/1213_linux-4.4.214.patch b/1213_linux-4.4.214.patch new file mode 100644 index 00000000..d9f280fe --- /dev/null +++ b/1213_linux-4.4.214.patch @@ -0,0 +1,11112 @@ +diff --git a/Makefile b/Makefile +index 6e86896525d9..89f09ef4c552 100644 +--- a/Makefile ++++ b/Makefile +@@ -1,6 +1,6 @@ + VERSION = 4 + PATCHLEVEL = 4 +-SUBLEVEL = 213 ++SUBLEVEL = 214 + EXTRAVERSION = + NAME = Blurry Fish Butt + +diff --git a/arch/arc/boot/dts/axs10x_mb.dtsi b/arch/arc/boot/dts/axs10x_mb.dtsi +index 44a578c10732..2f52e584f3f7 100644 +--- a/arch/arc/boot/dts/axs10x_mb.dtsi ++++ b/arch/arc/boot/dts/axs10x_mb.dtsi +@@ -44,6 +44,7 @@ + interrupt-names = "macirq"; + phy-mode = "rgmii"; + snps,pbl = < 32 >; ++ snps,multicast-filter-bins = <256>; + clocks = <&apbclk>; + clock-names = "stmmaceth"; + max-speed = <100>; +diff --git a/arch/arm/boot/dts/sama5d3.dtsi b/arch/arm/boot/dts/sama5d3.dtsi +index a53279160f98..6b1894400ccc 100644 +--- a/arch/arm/boot/dts/sama5d3.dtsi ++++ b/arch/arm/boot/dts/sama5d3.dtsi +@@ -1106,49 +1106,49 @@ + usart0_clk: usart0_clk { + #clock-cells = <0>; + reg = <12>; +- atmel,clk-output-range = <0 66000000>; ++ atmel,clk-output-range = <0 83000000>; + }; + + usart1_clk: usart1_clk { + #clock-cells = <0>; + reg = <13>; +- atmel,clk-output-range = <0 66000000>; ++ atmel,clk-output-range = <0 83000000>; + }; + + usart2_clk: usart2_clk { + #clock-cells = <0>; + reg = <14>; +- atmel,clk-output-range = <0 66000000>; ++ atmel,clk-output-range = <0 83000000>; + }; + + usart3_clk: usart3_clk { + #clock-cells = <0>; + reg = <15>; +- atmel,clk-output-range = <0 66000000>; ++ atmel,clk-output-range = <0 83000000>; + }; + + uart0_clk: uart0_clk { + #clock-cells = <0>; + reg = <16>; +- atmel,clk-output-range = <0 66000000>; ++ atmel,clk-output-range = <0 83000000>; + }; + + twi0_clk: twi0_clk { + reg = <18>; + #clock-cells = <0>; +- atmel,clk-output-range = <0 16625000>; ++ atmel,clk-output-range = <0 41500000>; + }; + + twi1_clk: twi1_clk { + #clock-cells = <0>; + reg = <19>; +- atmel,clk-output-range = <0 16625000>; ++ atmel,clk-output-range = <0 41500000>; + }; + + twi2_clk: twi2_clk { + #clock-cells = <0>; + reg = <20>; +- atmel,clk-output-range = <0 16625000>; ++ atmel,clk-output-range = <0 41500000>; + }; + + mci0_clk: mci0_clk { +@@ -1164,19 +1164,19 @@ + spi0_clk: spi0_clk { + #clock-cells = <0>; + reg = <24>; +- atmel,clk-output-range = <0 133000000>; ++ atmel,clk-output-range = <0 166000000>; + }; + + spi1_clk: spi1_clk { + #clock-cells = <0>; + reg = <25>; +- atmel,clk-output-range = <0 133000000>; ++ atmel,clk-output-range = <0 166000000>; + }; + + tcb0_clk: tcb0_clk { + #clock-cells = <0>; + reg = <26>; +- atmel,clk-output-range = <0 133000000>; ++ atmel,clk-output-range = <0 166000000>; + }; + + pwm_clk: pwm_clk { +@@ -1187,7 +1187,7 @@ + adc_clk: adc_clk { + #clock-cells = <0>; + reg = <29>; +- atmel,clk-output-range = <0 66000000>; ++ atmel,clk-output-range = <0 83000000>; + }; + + dma0_clk: dma0_clk { +@@ -1218,13 +1218,13 @@ + ssc0_clk: ssc0_clk { + #clock-cells = <0>; + reg = <38>; +- atmel,clk-output-range = <0 66000000>; ++ atmel,clk-output-range = <0 83000000>; + }; + + ssc1_clk: ssc1_clk { + #clock-cells = <0>; + reg = <39>; +- atmel,clk-output-range = <0 66000000>; ++ atmel,clk-output-range = <0 83000000>; + }; + + sha_clk: sha_clk { +diff --git a/arch/arm/boot/dts/sama5d3_can.dtsi b/arch/arm/boot/dts/sama5d3_can.dtsi +index c5a3772741bf..0fac79f75c06 100644 +--- a/arch/arm/boot/dts/sama5d3_can.dtsi ++++ b/arch/arm/boot/dts/sama5d3_can.dtsi +@@ -37,13 +37,13 @@ + can0_clk: can0_clk { + #clock-cells = <0>; + reg = <40>; +- atmel,clk-output-range = <0 66000000>; ++ atmel,clk-output-range = <0 83000000>; + }; + + can1_clk: can1_clk { + #clock-cells = <0>; + reg = <41>; +- atmel,clk-output-range = <0 66000000>; ++ atmel,clk-output-range = <0 83000000>; + }; + }; + }; +diff --git a/arch/arm/boot/dts/sama5d3_tcb1.dtsi b/arch/arm/boot/dts/sama5d3_tcb1.dtsi +index 801f9745e82f..b80dbc45a3c2 100644 +--- a/arch/arm/boot/dts/sama5d3_tcb1.dtsi ++++ b/arch/arm/boot/dts/sama5d3_tcb1.dtsi +@@ -23,6 +23,7 @@ + tcb1_clk: tcb1_clk { + #clock-cells = <0>; + reg = <27>; ++ atmel,clk-output-range = <0 166000000>; + }; + }; + }; +diff --git a/arch/arm/boot/dts/sama5d3_uart.dtsi b/arch/arm/boot/dts/sama5d3_uart.dtsi +index 2511d748867b..71818c7bfb67 100644 +--- a/arch/arm/boot/dts/sama5d3_uart.dtsi ++++ b/arch/arm/boot/dts/sama5d3_uart.dtsi +@@ -42,13 +42,13 @@ + uart0_clk: uart0_clk { + #clock-cells = <0>; + reg = <16>; +- atmel,clk-output-range = <0 66000000>; ++ atmel,clk-output-range = <0 83000000>; + }; + + uart1_clk: uart1_clk { + #clock-cells = <0>; + reg = <17>; +- atmel,clk-output-range = <0 66000000>; ++ atmel,clk-output-range = <0 83000000>; + }; + }; + }; +diff --git a/arch/arm/mach-tegra/sleep-tegra30.S b/arch/arm/mach-tegra/sleep-tegra30.S +index 9a2f0b051e10..c6cf775975a2 100644 +--- a/arch/arm/mach-tegra/sleep-tegra30.S ++++ b/arch/arm/mach-tegra/sleep-tegra30.S +@@ -379,6 +379,14 @@ _pll_m_c_x_done: + pll_locked r1, r0, CLK_RESET_PLLC_BASE + pll_locked r1, r0, CLK_RESET_PLLX_BASE + ++ tegra_get_soc_id TEGRA_APB_MISC_BASE, r1 ++ cmp r1, #TEGRA30 ++ beq 1f ++ ldr r1, [r0, #CLK_RESET_PLLP_BASE] ++ bic r1, r1, #(1<<31) @ disable PllP bypass ++ str r1, [r0, #CLK_RESET_PLLP_BASE] ++1: ++ + mov32 r7, TEGRA_TMRUS_BASE + ldr r1, [r7] + add r1, r1, #LOCK_DELAY +@@ -638,7 +646,10 @@ tegra30_switch_cpu_to_clk32k: + str r0, [r4, #PMC_PLLP_WB0_OVERRIDE] + + /* disable PLLP, PLLA, PLLC and PLLX */ ++ tegra_get_soc_id TEGRA_APB_MISC_BASE, r1 ++ cmp r1, #TEGRA30 + ldr r0, [r5, #CLK_RESET_PLLP_BASE] ++ orrne r0, r0, #(1 << 31) @ enable PllP bypass on fast cluster + bic r0, r0, #(1 << 30) + str r0, [r5, #CLK_RESET_PLLP_BASE] + ldr r0, [r5, #CLK_RESET_PLLA_BASE] +diff --git a/arch/powerpc/Kconfig b/arch/powerpc/Kconfig +index 01b6c00a7060..4ece20178145 100644 +--- a/arch/powerpc/Kconfig ++++ b/arch/powerpc/Kconfig +@@ -93,6 +93,7 @@ config PPC + select BINFMT_ELF + select ARCH_HAS_ELF_RANDOMIZE + select OF ++ select OF_DMA_DEFAULT_COHERENT if !NOT_COHERENT_CACHE + select OF_EARLY_FLATTREE + select OF_RESERVED_MEM + select HAVE_FTRACE_MCOUNT_RECORD +diff --git a/arch/powerpc/boot/4xx.c b/arch/powerpc/boot/4xx.c +index 9d3bd4c45a24..1c4354f922fd 100644 +--- a/arch/powerpc/boot/4xx.c ++++ b/arch/powerpc/boot/4xx.c +@@ -232,7 +232,7 @@ void ibm4xx_denali_fixup_memsize(void) + dpath = 8; /* 64 bits */ + + /* get address pins (rows) */ +- val = SDRAM0_READ(DDR0_42); ++ val = SDRAM0_READ(DDR0_42); + + row = DDR_GET_VAL(val, DDR_APIN, DDR_APIN_SHIFT); + if (row > max_row) +diff --git a/arch/powerpc/kvm/book3s_hv.c b/arch/powerpc/kvm/book3s_hv.c +index 767ac1572c02..54c6ba87a25a 100644 +--- a/arch/powerpc/kvm/book3s_hv.c ++++ b/arch/powerpc/kvm/book3s_hv.c +@@ -1669,7 +1669,7 @@ static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, + mutex_unlock(&kvm->lock); + + if (!vcore) +- goto free_vcpu; ++ goto uninit_vcpu; + + spin_lock(&vcore->lock); + ++vcore->num_threads; +@@ -1685,6 +1685,8 @@ static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, + + return vcpu; + ++uninit_vcpu: ++ kvm_vcpu_uninit(vcpu); + free_vcpu: + kmem_cache_free(kvm_vcpu_cache, vcpu); + out: +diff --git a/arch/powerpc/kvm/book3s_pr.c b/arch/powerpc/kvm/book3s_pr.c +index 81313844d81c..91db2852aa6e 100644 +--- a/arch/powerpc/kvm/book3s_pr.c ++++ b/arch/powerpc/kvm/book3s_pr.c +@@ -1434,10 +1434,12 @@ static struct kvm_vcpu *kvmppc_core_vcpu_create_pr(struct kvm *kvm, + + err = kvmppc_mmu_init(vcpu); + if (err < 0) +- goto uninit_vcpu; ++ goto free_shared_page; + + return vcpu; + ++free_shared_page: ++ free_page((unsigned long)vcpu->arch.shared); + uninit_vcpu: + kvm_vcpu_uninit(vcpu); + free_shadow_vcpu: +diff --git a/arch/powerpc/platforms/pseries/hotplug-memory.c b/arch/powerpc/platforms/pseries/hotplug-memory.c +index e8b1027e1b5b..0e65d52eb56d 100644 +--- a/arch/powerpc/platforms/pseries/hotplug-memory.c ++++ b/arch/powerpc/platforms/pseries/hotplug-memory.c +@@ -205,8 +205,10 @@ static bool lmb_is_removable(struct of_drconf_cell *lmb) + + for (i = 0; i < scns_per_block; i++) { + pfn = PFN_DOWN(phys_addr); +- if (!pfn_present(pfn)) ++ if (!pfn_present(pfn)) { ++ phys_addr += MIN_MEMORY_BLOCK_SIZE; + continue; ++ } + + rc &= is_mem_section_removable(pfn, PAGES_PER_SECTION); + phys_addr += MIN_MEMORY_BLOCK_SIZE; +diff --git a/arch/powerpc/platforms/pseries/iommu.c b/arch/powerpc/platforms/pseries/iommu.c +index 3e8865b187de..17b322e8b799 100644 +--- a/arch/powerpc/platforms/pseries/iommu.c ++++ b/arch/powerpc/platforms/pseries/iommu.c +@@ -202,10 +202,10 @@ static unsigned long tce_get_pseries(struct iommu_table *tbl, long index) + return be64_to_cpu(*tcep); + } + +-static void tce_free_pSeriesLP(struct iommu_table*, long, long); ++static void tce_free_pSeriesLP(unsigned long liobn, long, long); + static void tce_freemulti_pSeriesLP(struct iommu_table*, long, long); + +-static int tce_build_pSeriesLP(struct iommu_table *tbl, long tcenum, ++static int tce_build_pSeriesLP(unsigned long liobn, long tcenum, long tceshift, + long npages, unsigned long uaddr, + enum dma_data_direction direction, + struct dma_attrs *attrs) +@@ -216,25 +216,25 @@ static int tce_build_pSeriesLP(struct iommu_table *tbl, long tcenum, + int ret = 0; + long tcenum_start = tcenum, npages_start = npages; + +- rpn = __pa(uaddr) >> TCE_SHIFT; ++ rpn = __pa(uaddr) >> tceshift; + proto_tce = TCE_PCI_READ; + if (direction != DMA_TO_DEVICE) + proto_tce |= TCE_PCI_WRITE; + + while (npages--) { +- tce = proto_tce | (rpn & TCE_RPN_MASK) << TCE_RPN_SHIFT; +- rc = plpar_tce_put((u64)tbl->it_index, (u64)tcenum << 12, tce); ++ tce = proto_tce | (rpn & TCE_RPN_MASK) << tceshift; ++ rc = plpar_tce_put((u64)liobn, (u64)tcenum << tceshift, tce); + + if (unlikely(rc == H_NOT_ENOUGH_RESOURCES)) { + ret = (int)rc; +- tce_free_pSeriesLP(tbl, tcenum_start, ++ tce_free_pSeriesLP(liobn, tcenum_start, + (npages_start - (npages + 1))); + break; + } + + if (rc && printk_ratelimit()) { + printk("tce_build_pSeriesLP: plpar_tce_put failed. rc=%lld\n", rc); +- printk("\tindex = 0x%llx\n", (u64)tbl->it_index); ++ printk("\tindex = 0x%llx\n", (u64)liobn); + printk("\ttcenum = 0x%llx\n", (u64)tcenum); + printk("\ttce val = 0x%llx\n", tce ); + dump_stack(); +@@ -263,7 +263,8 @@ static int tce_buildmulti_pSeriesLP(struct iommu_table *tbl, long tcenum, + unsigned long flags; + + if ((npages == 1) || !firmware_has_feature(FW_FEATURE_MULTITCE)) { +- return tce_build_pSeriesLP(tbl, tcenum, npages, uaddr, ++ return tce_build_pSeriesLP(tbl->it_index, tcenum, ++ tbl->it_page_shift, npages, uaddr, + direction, attrs); + } + +@@ -279,8 +280,9 @@ static int tce_buildmulti_pSeriesLP(struct iommu_table *tbl, long tcenum, + /* If allocation fails, fall back to the loop implementation */ + if (!tcep) { + local_irq_restore(flags); +- return tce_build_pSeriesLP(tbl, tcenum, npages, uaddr, +- direction, attrs); ++ return tce_build_pSeriesLP(tbl->it_index, tcenum, ++ tbl->it_page_shift, ++ npages, uaddr, direction, attrs); + } + __this_cpu_write(tce_page, tcep); + } +@@ -331,16 +333,16 @@ static int tce_buildmulti_pSeriesLP(struct iommu_table *tbl, long tcenum, + return ret; + } + +-static void tce_free_pSeriesLP(struct iommu_table *tbl, long tcenum, long npages) ++static void tce_free_pSeriesLP(unsigned long liobn, long tcenum, long npages) + { + u64 rc; + + while (npages--) { +- rc = plpar_tce_put((u64)tbl->it_index, (u64)tcenum << 12, 0); ++ rc = plpar_tce_put((u64)liobn, (u64)tcenum << 12, 0); + + if (rc && printk_ratelimit()) { + printk("tce_free_pSeriesLP: plpar_tce_put failed. rc=%lld\n", rc); +- printk("\tindex = 0x%llx\n", (u64)tbl->it_index); ++ printk("\tindex = 0x%llx\n", (u64)liobn); + printk("\ttcenum = 0x%llx\n", (u64)tcenum); + dump_stack(); + } +@@ -355,7 +357,7 @@ static void tce_freemulti_pSeriesLP(struct iommu_table *tbl, long tcenum, long n + u64 rc; + + if (!firmware_has_feature(FW_FEATURE_MULTITCE)) +- return tce_free_pSeriesLP(tbl, tcenum, npages); ++ return tce_free_pSeriesLP(tbl->it_index, tcenum, npages); + + rc = plpar_tce_stuff((u64)tbl->it_index, (u64)tcenum << 12, 0, npages); + +@@ -470,6 +472,19 @@ static int tce_setrange_multi_pSeriesLP(unsigned long start_pfn, + u64 rc = 0; + long l, limit; + ++ if (!firmware_has_feature(FW_FEATURE_MULTITCE)) { ++ unsigned long tceshift = be32_to_cpu(maprange->tce_shift); ++ unsigned long dmastart = (start_pfn << PAGE_SHIFT) + ++ be64_to_cpu(maprange->dma_base); ++ unsigned long tcenum = dmastart >> tceshift; ++ unsigned long npages = num_pfn << PAGE_SHIFT >> tceshift; ++ void *uaddr = __va(start_pfn << PAGE_SHIFT); ++ ++ return tce_build_pSeriesLP(be32_to_cpu(maprange->liobn), ++ tcenum, tceshift, npages, (unsigned long) uaddr, ++ DMA_BIDIRECTIONAL, 0); ++ } ++ + local_irq_disable(); /* to protect tcep and the page behind it */ + tcep = __this_cpu_read(tce_page); + +diff --git a/arch/sparc/include/uapi/asm/ipcbuf.h b/arch/sparc/include/uapi/asm/ipcbuf.h +index 66013b4fe10d..58da9c4addb2 100644 +--- a/arch/sparc/include/uapi/asm/ipcbuf.h ++++ b/arch/sparc/include/uapi/asm/ipcbuf.h +@@ -14,19 +14,19 @@ + + struct ipc64_perm + { +- __kernel_key_t key; +- __kernel_uid_t uid; +- __kernel_gid_t gid; +- __kernel_uid_t cuid; +- __kernel_gid_t cgid; ++ __kernel_key_t key; ++ __kernel_uid32_t uid; ++ __kernel_gid32_t gid; ++ __kernel_uid32_t cuid; ++ __kernel_gid32_t cgid; + #ifndef __arch64__ +- unsigned short __pad0; ++ unsigned short __pad0; + #endif +- __kernel_mode_t mode; +- unsigned short __pad1; +- unsigned short seq; +- unsigned long long __unused1; +- unsigned long long __unused2; ++ __kernel_mode_t mode; ++ unsigned short __pad1; ++ unsigned short seq; ++ unsigned long long __unused1; ++ unsigned long long __unused2; + }; + + #endif /* __SPARC_IPCBUF_H */ +diff --git a/arch/x86/kernel/cpu/tsx.c b/arch/x86/kernel/cpu/tsx.c +index c2a9dd816c5c..9a7983968ba8 100644 +--- a/arch/x86/kernel/cpu/tsx.c ++++ b/arch/x86/kernel/cpu/tsx.c +@@ -115,11 +115,12 @@ void __init tsx_init(void) + tsx_disable(); + + /* +- * tsx_disable() will change the state of the +- * RTM CPUID bit. Clear it here since it is now +- * expected to be not set. ++ * tsx_disable() will change the state of the RTM and HLE CPUID ++ * bits. Clear them here since they are now expected to be not ++ * set. + */ + setup_clear_cpu_cap(X86_FEATURE_RTM); ++ setup_clear_cpu_cap(X86_FEATURE_HLE); + } else if (tsx_ctrl_state == TSX_CTRL_ENABLE) { + + /* +@@ -131,10 +132,10 @@ void __init tsx_init(void) + tsx_enable(); + + /* +- * tsx_enable() will change the state of the +- * RTM CPUID bit. Force it here since it is now +- * expected to be set. ++ * tsx_enable() will change the state of the RTM and HLE CPUID ++ * bits. Force them here since they are now expected to be set. + */ + setup_force_cpu_cap(X86_FEATURE_RTM); ++ setup_force_cpu_cap(X86_FEATURE_HLE); + } + } +diff --git a/arch/x86/kvm/emulate.c b/arch/x86/kvm/emulate.c +index 6c7847b3aa2d..ffbdd201c1f1 100644 +--- a/arch/x86/kvm/emulate.c ++++ b/arch/x86/kvm/emulate.c +@@ -23,6 +23,7 @@ + #include <linux/kvm_host.h> + #include "kvm_cache_regs.h" + #include <linux/module.h> ++#include <linux/nospec.h> + #include <asm/kvm_emulate.h> + #include <linux/stringify.h> + #include <asm/debugreg.h> +@@ -5041,16 +5042,28 @@ int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len) + ctxt->ad_bytes = def_ad_bytes ^ 6; + break; + case 0x26: /* ES override */ ++ has_seg_override = true; ++ ctxt->seg_override = VCPU_SREG_ES; ++ break; + case 0x2e: /* CS override */ ++ has_seg_override = true; ++ ctxt->seg_override = VCPU_SREG_CS; ++ break; + case 0x36: /* SS override */ ++ has_seg_override = true; ++ ctxt->seg_override = VCPU_SREG_SS; ++ break; + case 0x3e: /* DS override */ + has_seg_override = true; +- ctxt->seg_override = (ctxt->b >> 3) & 3; ++ ctxt->seg_override = VCPU_SREG_DS; + break; + case 0x64: /* FS override */ ++ has_seg_override = true; ++ ctxt->seg_override = VCPU_SREG_FS; ++ break; + case 0x65: /* GS override */ + has_seg_override = true; +- ctxt->seg_override = ctxt->b & 7; ++ ctxt->seg_override = VCPU_SREG_GS; + break; + case 0x40 ... 0x4f: /* REX */ + if (mode != X86EMUL_MODE_PROT64) +@@ -5134,10 +5147,15 @@ done_prefixes: + } + break; + case Escape: +- if (ctxt->modrm > 0xbf) +- opcode = opcode.u.esc->high[ctxt->modrm - 0xc0]; +- else ++ if (ctxt->modrm > 0xbf) { ++ size_t size = ARRAY_SIZE(opcode.u.esc->high); ++ u32 index = array_index_nospec( ++ ctxt->modrm - 0xc0, size); ++ ++ opcode = opcode.u.esc->high[index]; ++ } else { + opcode = opcode.u.esc->op[(ctxt->modrm >> 3) & 7]; ++ } + break; + case InstrDual: + if ((ctxt->modrm >> 6) == 3) +diff --git a/arch/x86/kvm/hyperv.c b/arch/x86/kvm/hyperv.c +index 62cf8c915e95..fce6fa012d30 100644 +--- a/arch/x86/kvm/hyperv.c ++++ b/arch/x86/kvm/hyperv.c +@@ -26,6 +26,7 @@ + #include "hyperv.h" + + #include <linux/kvm_host.h> ++#include <linux/nospec.h> + #include <trace/events/kvm.h> + + #include "trace.h" +@@ -53,11 +54,12 @@ static int kvm_hv_msr_get_crash_data(struct kvm_vcpu *vcpu, + u32 index, u64 *pdata) + { + struct kvm_hv *hv = &vcpu->kvm->arch.hyperv; ++ size_t size = ARRAY_SIZE(hv->hv_crash_param); + +- if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param))) ++ if (WARN_ON_ONCE(index >= size)) + return -EINVAL; + +- *pdata = hv->hv_crash_param[index]; ++ *pdata = hv->hv_crash_param[array_index_nospec(index, size)]; + return 0; + } + +@@ -96,11 +98,12 @@ static int kvm_hv_msr_set_crash_data(struct kvm_vcpu *vcpu, + u32 index, u64 data) + { + struct kvm_hv *hv = &vcpu->kvm->arch.hyperv; ++ size_t size = ARRAY_SIZE(hv->hv_crash_param); + +- if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param))) ++ if (WARN_ON_ONCE(index >= size)) + return -EINVAL; + +- hv->hv_crash_param[index] = data; ++ hv->hv_crash_param[array_index_nospec(index, size)] = data; + return 0; + } + +diff --git a/arch/x86/kvm/i8259.c b/arch/x86/kvm/i8259.c +index 7cc2360f1848..791850bfc981 100644 +--- a/arch/x86/kvm/i8259.c ++++ b/arch/x86/kvm/i8259.c +@@ -456,46 +456,37 @@ static u32 elcr_ioport_read(void *opaque, u32 addr1) + return s->elcr; + } + +-static int picdev_in_range(gpa_t addr) +-{ +- switch (addr) { +- case 0x20: +- case 0x21: +- case 0xa0: +- case 0xa1: +- case 0x4d0: +- case 0x4d1: +- return 1; +- default: +- return 0; +- } +-} +- + static int picdev_write(struct kvm_pic *s, + gpa_t addr, int len, const void *val) + { + unsigned char data = *(unsigned char *)val; +- if (!picdev_in_range(addr)) +- return -EOPNOTSUPP; + + if (len != 1) { + pr_pic_unimpl("non byte write\n"); + return 0; + } +- pic_lock(s); + switch (addr) { + case 0x20: + case 0x21: ++ pic_lock(s); ++ pic_ioport_write(&s->pics[0], addr, data); ++ pic_unlock(s); ++ break; + case 0xa0: + case 0xa1: +- pic_ioport_write(&s->pics[addr >> 7], addr, data); ++ pic_lock(s); ++ pic_ioport_write(&s->pics[1], addr, data); ++ pic_unlock(s); + break; + case 0x4d0: + case 0x4d1: ++ pic_lock(s); + elcr_ioport_write(&s->pics[addr & 1], addr, data); ++ pic_unlock(s); + break; ++ default: ++ return -EOPNOTSUPP; + } +- pic_unlock(s); + return 0; + } + +@@ -503,29 +494,31 @@ static int picdev_read(struct kvm_pic *s, + gpa_t addr, int len, void *val) + { + unsigned char data = 0; +- if (!picdev_in_range(addr)) +- return -EOPNOTSUPP; + + if (len != 1) { + memset(val, 0, len); + pr_pic_unimpl("non byte read\n"); + return 0; + } +- pic_lock(s); + switch (addr) { + case 0x20: + case 0x21: + case 0xa0: + case 0xa1: ++ pic_lock(s); + data = pic_ioport_read(&s->pics[addr >> 7], addr); ++ pic_unlock(s); + break; + case 0x4d0: + case 0x4d1: ++ pic_lock(s); + data = elcr_ioport_read(&s->pics[addr & 1], addr); ++ pic_unlock(s); + break; ++ default: ++ return -EOPNOTSUPP; + } + *(unsigned char *)val = data; +- pic_unlock(s); + return 0; + } + +diff --git a/arch/x86/kvm/ioapic.c b/arch/x86/kvm/ioapic.c +index d380111351c0..086833ecb9f2 100644 +--- a/arch/x86/kvm/ioapic.c ++++ b/arch/x86/kvm/ioapic.c +@@ -36,6 +36,7 @@ + #include <linux/io.h> + #include <linux/slab.h> + #include <linux/export.h> ++#include <linux/nospec.h> + #include <asm/processor.h> + #include <asm/page.h> + #include <asm/current.h> +@@ -73,13 +74,14 @@ static unsigned long ioapic_read_indirect(struct kvm_ioapic *ioapic, + default: + { + u32 redir_index = (ioapic->ioregsel - 0x10) >> 1; +- u64 redir_content; ++ u64 redir_content = ~0ULL; + +- if (redir_index < IOAPIC_NUM_PINS) +- redir_content = +- ioapic->redirtbl[redir_index].bits; +- else +- redir_content = ~0ULL; ++ if (redir_index < IOAPIC_NUM_PINS) { ++ u32 index = array_index_nospec( ++ redir_index, IOAPIC_NUM_PINS); ++ ++ redir_content = ioapic->redirtbl[index].bits; ++ } + + result = (ioapic->ioregsel & 0x1) ? + (redir_content >> 32) & 0xffffffff : +@@ -289,6 +291,7 @@ static void ioapic_write_indirect(struct kvm_ioapic *ioapic, u32 val) + ioapic_debug("change redir index %x val %x\n", index, val); + if (index >= IOAPIC_NUM_PINS) + return; ++ index = array_index_nospec(index, IOAPIC_NUM_PINS); + e = &ioapic->redirtbl[index]; + mask_before = e->fields.mask; + /* Preserve read-only fields */ +diff --git a/arch/x86/kvm/lapic.c b/arch/x86/kvm/lapic.c +index 3c70f6c76d3a..ce8c4ae25c15 100644 +--- a/arch/x86/kvm/lapic.c ++++ b/arch/x86/kvm/lapic.c +@@ -36,6 +36,7 @@ + #include <asm/delay.h> + #include <linux/atomic.h> + #include <linux/jump_label.h> ++#include <linux/nospec.h> + #include "kvm_cache_regs.h" + #include "irq.h" + #include "trace.h" +@@ -1432,15 +1433,21 @@ static int apic_reg_write(struct kvm_lapic *apic, u32 reg, u32 val) + case APIC_LVTTHMR: + case APIC_LVTPC: + case APIC_LVT1: +- case APIC_LVTERR: ++ case APIC_LVTERR: { + /* TODO: Check vector */ ++ size_t size; ++ u32 index; ++ + if (!kvm_apic_sw_enabled(apic)) + val |= APIC_LVT_MASKED; + +- val &= apic_lvt_mask[(reg - APIC_LVTT) >> 4]; ++ size = ARRAY_SIZE(apic_lvt_mask); ++ index = array_index_nospec( ++ (reg - APIC_LVTT) >> 4, size); ++ val &= apic_lvt_mask[index]; + apic_set_reg(apic, reg, val); +- + break; ++ } + + case APIC_LVTT: + if (!kvm_apic_sw_enabled(apic)) +diff --git a/arch/x86/kvm/mtrr.c b/arch/x86/kvm/mtrr.c +index 0149ac59c273..3e3016411020 100644 +--- a/arch/x86/kvm/mtrr.c ++++ b/arch/x86/kvm/mtrr.c +@@ -17,6 +17,7 @@ + */ + + #include <linux/kvm_host.h> ++#include <linux/nospec.h> + #include <asm/mtrr.h> + + #include "cpuid.h" +@@ -202,11 +203,15 @@ static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit) + break; + case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000: + *seg = 1; +- *unit = msr - MSR_MTRRfix16K_80000; ++ *unit = array_index_nospec( ++ msr - MSR_MTRRfix16K_80000, ++ MSR_MTRRfix16K_A0000 - MSR_MTRRfix16K_80000 + 1); + break; + case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000: + *seg = 2; +- *unit = msr - MSR_MTRRfix4K_C0000; ++ *unit = array_index_nospec( ++ msr - MSR_MTRRfix4K_C0000, ++ MSR_MTRRfix4K_F8000 - MSR_MTRRfix4K_C0000 + 1); + break; + default: + return false; +diff --git a/arch/x86/kvm/pmu.h b/arch/x86/kvm/pmu.h +index f96e1f962587..fbf3d25af765 100644 +--- a/arch/x86/kvm/pmu.h ++++ b/arch/x86/kvm/pmu.h +@@ -1,6 +1,8 @@ + #ifndef __KVM_X86_PMU_H + #define __KVM_X86_PMU_H + ++#include <linux/nospec.h> ++ + #define vcpu_to_pmu(vcpu) (&(vcpu)->arch.pmu) + #define pmu_to_vcpu(pmu) (container_of((pmu), struct kvm_vcpu, arch.pmu)) + #define pmc_to_pmu(pmc) (&(pmc)->vcpu->arch.pmu) +@@ -80,8 +82,12 @@ static inline bool pmc_is_enabled(struct kvm_pmc *pmc) + static inline struct kvm_pmc *get_gp_pmc(struct kvm_pmu *pmu, u32 msr, + u32 base) + { +- if (msr >= base && msr < base + pmu->nr_arch_gp_counters) +- return &pmu->gp_counters[msr - base]; ++ if (msr >= base && msr < base + pmu->nr_arch_gp_counters) { ++ u32 index = array_index_nospec(msr - base, ++ pmu->nr_arch_gp_counters); ++ ++ return &pmu->gp_counters[index]; ++ } + + return NULL; + } +@@ -91,8 +97,12 @@ static inline struct kvm_pmc *get_fixed_pmc(struct kvm_pmu *pmu, u32 msr) + { + int base = MSR_CORE_PERF_FIXED_CTR0; + +- if (msr >= base && msr < base + pmu->nr_arch_fixed_counters) +- return &pmu->fixed_counters[msr - base]; ++ if (msr >= base && msr < base + pmu->nr_arch_fixed_counters) { ++ u32 index = array_index_nospec(msr - base, ++ pmu->nr_arch_fixed_counters); ++ ++ return &pmu->fixed_counters[index]; ++ } + + return NULL; + } +diff --git a/arch/x86/kvm/pmu_intel.c b/arch/x86/kvm/pmu_intel.c +index 8fc07ea23344..822829f00590 100644 +--- a/arch/x86/kvm/pmu_intel.c ++++ b/arch/x86/kvm/pmu_intel.c +@@ -87,10 +87,14 @@ static unsigned intel_find_arch_event(struct kvm_pmu *pmu, + + static unsigned intel_find_fixed_event(int idx) + { +- if (idx >= ARRAY_SIZE(fixed_pmc_events)) ++ u32 event; ++ size_t size = ARRAY_SIZE(fixed_pmc_events); ++ ++ if (idx >= size) + return PERF_COUNT_HW_MAX; + +- return intel_arch_events[fixed_pmc_events[idx]].event_type; ++ event = fixed_pmc_events[array_index_nospec(idx, size)]; ++ return intel_arch_events[event].event_type; + } + + /* check if a PMC is enabled by comparising it with globl_ctrl bits. */ +@@ -131,15 +135,19 @@ static struct kvm_pmc *intel_msr_idx_to_pmc(struct kvm_vcpu *vcpu, + struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); + bool fixed = idx & (1u << 30); + struct kvm_pmc *counters; ++ unsigned int num_counters; + + idx &= ~(3u << 30); +- if (!fixed && idx >= pmu->nr_arch_gp_counters) +- return NULL; +- if (fixed && idx >= pmu->nr_arch_fixed_counters) ++ if (fixed) { ++ counters = pmu->fixed_counters; ++ num_counters = pmu->nr_arch_fixed_counters; ++ } else { ++ counters = pmu->gp_counters; ++ num_counters = pmu->nr_arch_gp_counters; ++ } ++ if (idx >= num_counters) + return NULL; +- counters = fixed ? pmu->fixed_counters : pmu->gp_counters; +- +- return &counters[idx]; ++ return &counters[array_index_nospec(idx, num_counters)]; + } + + static bool intel_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr) +diff --git a/arch/x86/kvm/vmx.c b/arch/x86/kvm/vmx.c +index 9344ac6b4f99..6c2b45f5d501 100644 +--- a/arch/x86/kvm/vmx.c ++++ b/arch/x86/kvm/vmx.c +@@ -7261,8 +7261,10 @@ static int handle_vmread(struct kvm_vcpu *vcpu) + /* _system ok, as nested_vmx_check_permission verified cpl=0 */ + if (kvm_write_guest_virt_system(vcpu, gva, &field_value, + (is_long_mode(vcpu) ? 8 : 4), +- &e)) ++ &e)) { + kvm_inject_page_fault(vcpu, &e); ++ return 1; ++ } + } + + nested_vmx_succeed(vcpu); +diff --git a/arch/x86/kvm/vmx/vmx.c b/arch/x86/kvm/vmx/vmx.c +new file mode 100644 +index 000000000000..3791ce8d269e +--- /dev/null ++++ b/arch/x86/kvm/vmx/vmx.c +@@ -0,0 +1,8033 @@ ++// SPDX-License-Identifier: GPL-2.0-only ++/* ++ * Kernel-based Virtual Machine driver for Linux ++ * ++ * This module enables machines with Intel VT-x extensions to run virtual ++ * machines without emulation or binary translation. ++ * ++ * Copyright (C) 2006 Qumranet, Inc. ++ * Copyright 2010 Red Hat, Inc. and/or its affiliates. ++ * ++ * Authors: ++ * Avi Kivity <avi@qumranet.com> ++ * Yaniv Kamay <yaniv@qumranet.com> ++ */ ++ ++#include <linux/frame.h> ++#include <linux/highmem.h> ++#include <linux/hrtimer.h> ++#include <linux/kernel.h> ++#include <linux/kvm_host.h> ++#include <linux/module.h> ++#include <linux/moduleparam.h> ++#include <linux/mod_devicetable.h> ++#include <linux/mm.h> ++#include <linux/sched.h> ++#include <linux/sched/smt.h> ++#include <linux/slab.h> ++#include <linux/tboot.h> ++#include <linux/trace_events.h> ++ ++#include <asm/apic.h> ++#include <asm/asm.h> ++#include <asm/cpu.h> ++#include <asm/debugreg.h> ++#include <asm/desc.h> ++#include <asm/fpu/internal.h> ++#include <asm/io.h> ++#include <asm/irq_remapping.h> ++#include <asm/kexec.h> ++#include <asm/perf_event.h> ++#include <asm/mce.h> ++#include <asm/mmu_context.h> ++#include <asm/mshyperv.h> ++#include <asm/spec-ctrl.h> ++#include <asm/virtext.h> ++#include <asm/vmx.h> ++ ++#include "capabilities.h" ++#include "cpuid.h" ++#include "evmcs.h" ++#include "irq.h" ++#include "kvm_cache_regs.h" ++#include "lapic.h" ++#include "mmu.h" ++#include "nested.h" ++#include "ops.h" ++#include "pmu.h" ++#include "trace.h" ++#include "vmcs.h" ++#include "vmcs12.h" ++#include "vmx.h" ++#include "x86.h" ++ ++MODULE_AUTHOR("Qumranet"); ++MODULE_LICENSE("GPL"); ++ ++static const struct x86_cpu_id vmx_cpu_id[] = { ++ X86_FEATURE_MATCH(X86_FEATURE_VMX), ++ {} ++}; ++MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); ++ ++bool __read_mostly enable_vpid = 1; ++module_param_named(vpid, enable_vpid, bool, 0444); ++ ++static bool __read_mostly enable_vnmi = 1; ++module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); ++ ++bool __read_mostly flexpriority_enabled = 1; ++module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); ++ ++bool __read_mostly enable_ept = 1; ++module_param_named(ept, enable_ept, bool, S_IRUGO); ++ ++bool __read_mostly enable_unrestricted_guest = 1; ++module_param_named(unrestricted_guest, ++ enable_unrestricted_guest, bool, S_IRUGO); ++ ++bool __read_mostly enable_ept_ad_bits = 1; ++module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); ++ ++static bool __read_mostly emulate_invalid_guest_state = true; ++module_param(emulate_invalid_guest_state, bool, S_IRUGO); ++ ++static bool __read_mostly fasteoi = 1; ++module_param(fasteoi, bool, S_IRUGO); ++ ++static bool __read_mostly enable_apicv = 1; ++module_param(enable_apicv, bool, S_IRUGO); ++ ++/* ++ * If nested=1, nested virtualization is supported, i.e., guests may use ++ * VMX and be a hypervisor for its own guests. If nested=0, guests may not ++ * use VMX instructions. ++ */ ++static bool __read_mostly nested = 1; ++module_param(nested, bool, S_IRUGO); ++ ++bool __read_mostly enable_pml = 1; ++module_param_named(pml, enable_pml, bool, S_IRUGO); ++ ++static bool __read_mostly dump_invalid_vmcs = 0; ++module_param(dump_invalid_vmcs, bool, 0644); ++ ++#define MSR_BITMAP_MODE_X2APIC 1 ++#define MSR_BITMAP_MODE_X2APIC_APICV 2 ++ ++#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL ++ ++/* Guest_tsc -> host_tsc conversion requires 64-bit division. */ ++static int __read_mostly cpu_preemption_timer_multi; ++static bool __read_mostly enable_preemption_timer = 1; ++#ifdef CONFIG_X86_64 ++module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); ++#endif ++ ++#define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) ++#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE ++#define KVM_VM_CR0_ALWAYS_ON \ ++ (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \ ++ X86_CR0_WP | X86_CR0_PG | X86_CR0_PE) ++#define KVM_CR4_GUEST_OWNED_BITS \ ++ (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \ ++ | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD) ++ ++#define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE ++#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) ++#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) ++ ++#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) ++ ++#define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ ++ RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ ++ RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ ++ RTIT_STATUS_BYTECNT)) ++ ++#define MSR_IA32_RTIT_OUTPUT_BASE_MASK \ ++ (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f) ++ ++/* ++ * These 2 parameters are used to config the controls for Pause-Loop Exiting: ++ * ple_gap: upper bound on the amount of time between two successive ++ * executions of PAUSE in a loop. Also indicate if ple enabled. ++ * According to test, this time is usually smaller than 128 cycles. ++ * ple_window: upper bound on the amount of time a guest is allowed to execute ++ * in a PAUSE loop. Tests indicate that most spinlocks are held for ++ * less than 2^12 cycles ++ * Time is measured based on a counter that runs at the same rate as the TSC, ++ * refer SDM volume 3b section 21.6.13 & 22.1.3. ++ */ ++static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; ++module_param(ple_gap, uint, 0444); ++ ++static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; ++module_param(ple_window, uint, 0444); ++ ++/* Default doubles per-vcpu window every exit. */ ++static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; ++module_param(ple_window_grow, uint, 0444); ++ ++/* Default resets per-vcpu window every exit to ple_window. */ ++static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; ++module_param(ple_window_shrink, uint, 0444); ++ ++/* Default is to compute the maximum so we can never overflow. */ ++static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; ++module_param(ple_window_max, uint, 0444); ++ ++/* Default is SYSTEM mode, 1 for host-guest mode */ ++int __read_mostly pt_mode = PT_MODE_SYSTEM; ++module_param(pt_mode, int, S_IRUGO); ++ ++static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); ++static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); ++static DEFINE_MUTEX(vmx_l1d_flush_mutex); ++ ++/* Storage for pre module init parameter parsing */ ++static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; ++ ++static const struct { ++ const char *option; ++ bool for_parse; ++} vmentry_l1d_param[] = { ++ [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, ++ [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, ++ [VMENTER_L1D_FLUSH_COND] = {"cond", true}, ++ [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, ++ [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, ++ [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, ++}; ++ ++#define L1D_CACHE_ORDER 4 ++static void *vmx_l1d_flush_pages; ++ ++static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) ++{ ++ struct page *page; ++ unsigned int i; ++ ++ if (!boot_cpu_has_bug(X86_BUG_L1TF)) { ++ l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; ++ return 0; ++ } ++ ++ if (!enable_ept) { ++ l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; ++ return 0; ++ } ++ ++ if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { ++ u64 msr; ++ ++ rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); ++ if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { ++ l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; ++ return 0; ++ } ++ } ++ ++ /* If set to auto use the default l1tf mitigation method */ ++ if (l1tf == VMENTER_L1D_FLUSH_AUTO) { ++ switch (l1tf_mitigation) { ++ case L1TF_MITIGATION_OFF: ++ l1tf = VMENTER_L1D_FLUSH_NEVER; ++ break; ++ case L1TF_MITIGATION_FLUSH_NOWARN: ++ case L1TF_MITIGATION_FLUSH: ++ case L1TF_MITIGATION_FLUSH_NOSMT: ++ l1tf = VMENTER_L1D_FLUSH_COND; ++ break; ++ case L1TF_MITIGATION_FULL: ++ case L1TF_MITIGATION_FULL_FORCE: ++ l1tf = VMENTER_L1D_FLUSH_ALWAYS; ++ break; ++ } ++ } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { ++ l1tf = VMENTER_L1D_FLUSH_ALWAYS; ++ } ++ ++ if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && ++ !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { ++ /* ++ * This allocation for vmx_l1d_flush_pages is not tied to a VM ++ * lifetime and so should not be charged to a memcg. ++ */ ++ page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); ++ if (!page) ++ return -ENOMEM; ++ vmx_l1d_flush_pages = page_address(page); ++ ++ /* ++ * Initialize each page with a different pattern in ++ * order to protect against KSM in the nested ++ * virtualization case. ++ */ ++ for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { ++ memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, ++ PAGE_SIZE); ++ } ++ } ++ ++ l1tf_vmx_mitigation = l1tf; ++ ++ if (l1tf != VMENTER_L1D_FLUSH_NEVER) ++ static_branch_enable(&vmx_l1d_should_flush); ++ else ++ static_branch_disable(&vmx_l1d_should_flush); ++ ++ if (l1tf == VMENTER_L1D_FLUSH_COND) ++ static_branch_enable(&vmx_l1d_flush_cond); ++ else ++ static_branch_disable(&vmx_l1d_flush_cond); ++ return 0; ++} ++ ++static int vmentry_l1d_flush_parse(const char *s) ++{ ++ unsigned int i; ++ ++ if (s) { ++ for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { ++ if (vmentry_l1d_param[i].for_parse && ++ sysfs_streq(s, vmentry_l1d_param[i].option)) ++ return i; ++ } ++ } ++ return -EINVAL; ++} ++ ++static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) ++{ ++ int l1tf, ret; ++ ++ l1tf = vmentry_l1d_flush_parse(s); ++ if (l1tf < 0) ++ return l1tf; ++ ++ if (!boot_cpu_has(X86_BUG_L1TF)) ++ return 0; ++ ++ /* ++ * Has vmx_init() run already? If not then this is the pre init ++ * parameter parsing. In that case just store the value and let ++ * vmx_init() do the proper setup after enable_ept has been ++ * established. ++ */ ++ if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { ++ vmentry_l1d_flush_param = l1tf; ++ return 0; ++ } ++ ++ mutex_lock(&vmx_l1d_flush_mutex); ++ ret = vmx_setup_l1d_flush(l1tf); ++ mutex_unlock(&vmx_l1d_flush_mutex); ++ return ret; ++} ++ ++static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) ++{ ++ if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) ++ return sprintf(s, "???\n"); ++ ++ return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); ++} ++ ++static const struct kernel_param_ops vmentry_l1d_flush_ops = { ++ .set = vmentry_l1d_flush_set, ++ .get = vmentry_l1d_flush_get, ++}; ++module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); ++ ++static bool guest_state_valid(struct kvm_vcpu *vcpu); ++static u32 vmx_segment_access_rights(struct kvm_segment *var); ++static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, ++ u32 msr, int type); ++ ++void vmx_vmexit(void); ++ ++#define vmx_insn_failed(fmt...) \ ++do { \ ++ WARN_ONCE(1, fmt); \ ++ pr_warn_ratelimited(fmt); \ ++} while (0) ++ ++asmlinkage void vmread_error(unsigned long field, bool fault) ++{ ++ if (fault) ++ kvm_spurious_fault(); ++ else ++ vmx_insn_failed("kvm: vmread failed: field=%lx\n", field); ++} ++ ++noinline void vmwrite_error(unsigned long field, unsigned long value) ++{ ++ vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n", ++ field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); ++} ++ ++noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) ++{ ++ vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr); ++} ++ ++noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) ++{ ++ vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr); ++} ++ ++noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) ++{ ++ vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", ++ ext, vpid, gva); ++} ++ ++noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) ++{ ++ vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", ++ ext, eptp, gpa); ++} ++ ++static DEFINE_PER_CPU(struct vmcs *, vmxarea); ++DEFINE_PER_CPU(struct vmcs *, current_vmcs); ++/* ++ * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed ++ * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. ++ */ ++static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); ++ ++/* ++ * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we ++ * can find which vCPU should be waken up. ++ */ ++static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu); ++static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock); ++ ++static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); ++static DEFINE_SPINLOCK(vmx_vpid_lock); ++ ++struct vmcs_config vmcs_config; ++struct vmx_capability vmx_capability; ++ ++#define VMX_SEGMENT_FIELD(seg) \ ++ [VCPU_SREG_##seg] = { \ ++ .selector = GUEST_##seg##_SELECTOR, \ ++ .base = GUEST_##seg##_BASE, \ ++ .limit = GUEST_##seg##_LIMIT, \ ++ .ar_bytes = GUEST_##seg##_AR_BYTES, \ ++ } ++ ++static const struct kvm_vmx_segment_field { ++ unsigned selector; ++ unsigned base; ++ unsigned limit; ++ unsigned ar_bytes; ++} kvm_vmx_segment_fields[] = { ++ VMX_SEGMENT_FIELD(CS), ++ VMX_SEGMENT_FIELD(DS), ++ VMX_SEGMENT_FIELD(ES), ++ VMX_SEGMENT_FIELD(FS), ++ VMX_SEGMENT_FIELD(GS), ++ VMX_SEGMENT_FIELD(SS), ++ VMX_SEGMENT_FIELD(TR), ++ VMX_SEGMENT_FIELD(LDTR), ++}; ++ ++u64 host_efer; ++static unsigned long host_idt_base; ++ ++/* ++ * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm ++ * will emulate SYSCALL in legacy mode if the vendor string in guest ++ * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To ++ * support this emulation, IA32_STAR must always be included in ++ * vmx_msr_index[], even in i386 builds. ++ */ ++const u32 vmx_msr_index[] = { ++#ifdef CONFIG_X86_64 ++ MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, ++#endif ++ MSR_EFER, MSR_TSC_AUX, MSR_STAR, ++ MSR_IA32_TSX_CTRL, ++}; ++ ++#if IS_ENABLED(CONFIG_HYPERV) ++static bool __read_mostly enlightened_vmcs = true; ++module_param(enlightened_vmcs, bool, 0444); ++ ++/* check_ept_pointer() should be under protection of ept_pointer_lock. */ ++static void check_ept_pointer_match(struct kvm *kvm) ++{ ++ struct kvm_vcpu *vcpu; ++ u64 tmp_eptp = INVALID_PAGE; ++ int i; ++ ++ kvm_for_each_vcpu(i, vcpu, kvm) { ++ if (!VALID_PAGE(tmp_eptp)) { ++ tmp_eptp = to_vmx(vcpu)->ept_pointer; ++ } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) { ++ to_kvm_vmx(kvm)->ept_pointers_match ++ = EPT_POINTERS_MISMATCH; ++ return; ++ } ++ } ++ ++ to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH; ++} ++ ++static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush, ++ void *data) ++{ ++ struct kvm_tlb_range *range = data; ++ ++ return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn, ++ range->pages); ++} ++ ++static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm, ++ struct kvm_vcpu *vcpu, struct kvm_tlb_range *range) ++{ ++ u64 ept_pointer = to_vmx(vcpu)->ept_pointer; ++ ++ /* ++ * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address ++ * of the base of EPT PML4 table, strip off EPT configuration ++ * information. ++ */ ++ if (range) ++ return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK, ++ kvm_fill_hv_flush_list_func, (void *)range); ++ else ++ return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK); ++} ++ ++static int hv_remote_flush_tlb_with_range(struct kvm *kvm, ++ struct kvm_tlb_range *range) ++{ ++ struct kvm_vcpu *vcpu; ++ int ret = 0, i; ++ ++ spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock); ++ ++ if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK) ++ check_ept_pointer_match(kvm); ++ ++ if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) { ++ kvm_for_each_vcpu(i, vcpu, kvm) { ++ /* If ept_pointer is invalid pointer, bypass flush request. */ ++ if (VALID_PAGE(to_vmx(vcpu)->ept_pointer)) ++ ret |= __hv_remote_flush_tlb_with_range( ++ kvm, vcpu, range); ++ } ++ } else { ++ ret = __hv_remote_flush_tlb_with_range(kvm, ++ kvm_get_vcpu(kvm, 0), range); ++ } ++ ++ spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock); ++ return ret; ++} ++static int hv_remote_flush_tlb(struct kvm *kvm) ++{ ++ return hv_remote_flush_tlb_with_range(kvm, NULL); ++} ++ ++static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu) ++{ ++ struct hv_enlightened_vmcs *evmcs; ++ struct hv_partition_assist_pg **p_hv_pa_pg = ++ &vcpu->kvm->arch.hyperv.hv_pa_pg; ++ /* ++ * Synthetic VM-Exit is not enabled in current code and so All ++ * evmcs in singe VM shares same assist page. ++ */ ++ if (!*p_hv_pa_pg) ++ *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL); ++ ++ if (!*p_hv_pa_pg) ++ return -ENOMEM; ++ ++ evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; ++ ++ evmcs->partition_assist_page = ++ __pa(*p_hv_pa_pg); ++ evmcs->hv_vm_id = (unsigned long)vcpu->kvm; ++ evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; ++ ++ return 0; ++} ++ ++#endif /* IS_ENABLED(CONFIG_HYPERV) */ ++ ++/* ++ * Comment's format: document - errata name - stepping - processor name. ++ * Refer from ++ * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp ++ */ ++static u32 vmx_preemption_cpu_tfms[] = { ++/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ ++0x000206E6, ++/* 323056.pdf - AAX65 - C2 - Xeon L3406 */ ++/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ ++/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ ++0x00020652, ++/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ ++0x00020655, ++/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ ++/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ ++/* ++ * 320767.pdf - AAP86 - B1 - ++ * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile ++ */ ++0x000106E5, ++/* 321333.pdf - AAM126 - C0 - Xeon 3500 */ ++0x000106A0, ++/* 321333.pdf - AAM126 - C1 - Xeon 3500 */ ++0x000106A1, ++/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ ++0x000106A4, ++ /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ ++ /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ ++ /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ ++0x000106A5, ++ /* Xeon E3-1220 V2 */ ++0x000306A8, ++}; ++ ++static inline bool cpu_has_broken_vmx_preemption_timer(void) ++{ ++ u32 eax = cpuid_eax(0x00000001), i; ++ ++ /* Clear the reserved bits */ ++ eax &= ~(0x3U << 14 | 0xfU << 28); ++ for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) ++ if (eax == vmx_preemption_cpu_tfms[i]) ++ return true; ++ ++ return false; ++} ++ ++static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) ++{ ++ return flexpriority_enabled && lapic_in_kernel(vcpu); ++} ++ ++static inline bool report_flexpriority(void) ++{ ++ return flexpriority_enabled; ++} ++ ++static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr) ++{ ++ int i; ++ ++ for (i = 0; i < vmx->nmsrs; ++i) ++ if (vmx_msr_index[vmx->guest_msrs[i].index] == msr) ++ return i; ++ return -1; ++} ++ ++struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr) ++{ ++ int i; ++ ++ i = __find_msr_index(vmx, msr); ++ if (i >= 0) ++ return &vmx->guest_msrs[i]; ++ return NULL; ++} ++ ++static int vmx_set_guest_msr(struct vcpu_vmx *vmx, struct shared_msr_entry *msr, u64 data) ++{ ++ int ret = 0; ++ ++ u64 old_msr_data = msr->data; ++ msr->data = data; ++ if (msr - vmx->guest_msrs < vmx->save_nmsrs) { ++ preempt_disable(); ++ ret = kvm_set_shared_msr(msr->index, msr->data, ++ msr->mask); ++ preempt_enable(); ++ if (ret) ++ msr->data = old_msr_data; ++ } ++ return ret; ++} ++ ++void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs) ++{ ++ vmcs_clear(loaded_vmcs->vmcs); ++ if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) ++ vmcs_clear(loaded_vmcs->shadow_vmcs); ++ loaded_vmcs->cpu = -1; ++ loaded_vmcs->launched = 0; ++} ++ ++#ifdef CONFIG_KEXEC_CORE ++/* ++ * This bitmap is used to indicate whether the vmclear ++ * operation is enabled on all cpus. All disabled by ++ * default. ++ */ ++static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE; ++ ++static inline void crash_enable_local_vmclear(int cpu) ++{ ++ cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap); ++} ++ ++static inline void crash_disable_local_vmclear(int cpu) ++{ ++ cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap); ++} ++ ++static inline int crash_local_vmclear_enabled(int cpu) ++{ ++ return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap); ++} ++ ++static void crash_vmclear_local_loaded_vmcss(void) ++{ ++ int cpu = raw_smp_processor_id(); ++ struct loaded_vmcs *v; ++ ++ if (!crash_local_vmclear_enabled(cpu)) ++ return; ++ ++ list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), ++ loaded_vmcss_on_cpu_link) ++ vmcs_clear(v->vmcs); ++} ++#else ++static inline void crash_enable_local_vmclear(int cpu) { } ++static inline void crash_disable_local_vmclear(int cpu) { } ++#endif /* CONFIG_KEXEC_CORE */ ++ ++static void __loaded_vmcs_clear(void *arg) ++{ ++ struct loaded_vmcs *loaded_vmcs = arg; ++ int cpu = raw_smp_processor_id(); ++ ++ if (loaded_vmcs->cpu != cpu) ++ return; /* vcpu migration can race with cpu offline */ ++ if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) ++ per_cpu(current_vmcs, cpu) = NULL; ++ crash_disable_local_vmclear(cpu); ++ list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); ++ ++ /* ++ * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link ++ * is before setting loaded_vmcs->vcpu to -1 which is done in ++ * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist ++ * then adds the vmcs into percpu list before it is deleted. ++ */ ++ smp_wmb(); ++ ++ loaded_vmcs_init(loaded_vmcs); ++ crash_enable_local_vmclear(cpu); ++} ++ ++void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) ++{ ++ int cpu = loaded_vmcs->cpu; ++ ++ if (cpu != -1) ++ smp_call_function_single(cpu, ++ __loaded_vmcs_clear, loaded_vmcs, 1); ++} ++ ++static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, ++ unsigned field) ++{ ++ bool ret; ++ u32 mask = 1 << (seg * SEG_FIELD_NR + field); ++ ++ if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { ++ kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); ++ vmx->segment_cache.bitmask = 0; ++ } ++ ret = vmx->segment_cache.bitmask & mask; ++ vmx->segment_cache.bitmask |= mask; ++ return ret; ++} ++ ++static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) ++{ ++ u16 *p = &vmx->segment_cache.seg[seg].selector; ++ ++ if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) ++ *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); ++ return *p; ++} ++ ++static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) ++{ ++ ulong *p = &vmx->segment_cache.seg[seg].base; ++ ++ if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) ++ *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); ++ return *p; ++} ++ ++static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) ++{ ++ u32 *p = &vmx->segment_cache.seg[seg].limit; ++ ++ if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) ++ *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); ++ return *p; ++} ++ ++static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) ++{ ++ u32 *p = &vmx->segment_cache.seg[seg].ar; ++ ++ if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) ++ *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); ++ return *p; ++} ++ ++void update_exception_bitmap(struct kvm_vcpu *vcpu) ++{ ++ u32 eb; ++ ++ eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | ++ (1u << DB_VECTOR) | (1u << AC_VECTOR); ++ /* ++ * Guest access to VMware backdoor ports could legitimately ++ * trigger #GP because of TSS I/O permission bitmap. ++ * We intercept those #GP and allow access to them anyway ++ * as VMware does. ++ */ ++ if (enable_vmware_backdoor) ++ eb |= (1u << GP_VECTOR); ++ if ((vcpu->guest_debug & ++ (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == ++ (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ++ eb |= 1u << BP_VECTOR; ++ if (to_vmx(vcpu)->rmode.vm86_active) ++ eb = ~0; ++ if (enable_ept) ++ eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */ ++ ++ /* When we are running a nested L2 guest and L1 specified for it a ++ * certain exception bitmap, we must trap the same exceptions and pass ++ * them to L1. When running L2, we will only handle the exceptions ++ * specified above if L1 did not want them. ++ */ ++ if (is_guest_mode(vcpu)) ++ eb |= get_vmcs12(vcpu)->exception_bitmap; ++ ++ vmcs_write32(EXCEPTION_BITMAP, eb); ++} ++ ++/* ++ * Check if MSR is intercepted for currently loaded MSR bitmap. ++ */ ++static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) ++{ ++ unsigned long *msr_bitmap; ++ int f = sizeof(unsigned long); ++ ++ if (!cpu_has_vmx_msr_bitmap()) ++ return true; ++ ++ msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap; ++ ++ if (msr <= 0x1fff) { ++ return !!test_bit(msr, msr_bitmap + 0x800 / f); ++ } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { ++ msr &= 0x1fff; ++ return !!test_bit(msr, msr_bitmap + 0xc00 / f); ++ } ++ ++ return true; ++} ++ ++static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, ++ unsigned long entry, unsigned long exit) ++{ ++ vm_entry_controls_clearbit(vmx, entry); ++ vm_exit_controls_clearbit(vmx, exit); ++} ++ ++int vmx_find_msr_index(struct vmx_msrs *m, u32 msr) ++{ ++ unsigned int i; ++ ++ for (i = 0; i < m->nr; ++i) { ++ if (m->val[i].index == msr) ++ return i; ++ } ++ return -ENOENT; ++} ++ ++static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) ++{ ++ int i; ++ struct msr_autoload *m = &vmx->msr_autoload; ++ ++ switch (msr) { ++ case MSR_EFER: ++ if (cpu_has_load_ia32_efer()) { ++ clear_atomic_switch_msr_special(vmx, ++ VM_ENTRY_LOAD_IA32_EFER, ++ VM_EXIT_LOAD_IA32_EFER); ++ return; ++ } ++ break; ++ case MSR_CORE_PERF_GLOBAL_CTRL: ++ if (cpu_has_load_perf_global_ctrl()) { ++ clear_atomic_switch_msr_special(vmx, ++ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, ++ VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); ++ return; ++ } ++ break; ++ } ++ i = vmx_find_msr_index(&m->guest, msr); ++ if (i < 0) ++ goto skip_guest; ++ --m->guest.nr; ++ m->guest.val[i] = m->guest.val[m->guest.nr]; ++ vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); ++ ++skip_guest: ++ i = vmx_find_msr_index(&m->host, msr); ++ if (i < 0) ++ return; ++ ++ --m->host.nr; ++ m->host.val[i] = m->host.val[m->host.nr]; ++ vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); ++} ++ ++static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, ++ unsigned long entry, unsigned long exit, ++ unsigned long guest_val_vmcs, unsigned long host_val_vmcs, ++ u64 guest_val, u64 host_val) ++{ ++ vmcs_write64(guest_val_vmcs, guest_val); ++ if (host_val_vmcs != HOST_IA32_EFER) ++ vmcs_write64(host_val_vmcs, host_val); ++ vm_entry_controls_setbit(vmx, entry); ++ vm_exit_controls_setbit(vmx, exit); ++} ++ ++static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, ++ u64 guest_val, u64 host_val, bool entry_only) ++{ ++ int i, j = 0; ++ struct msr_autoload *m = &vmx->msr_autoload; ++ ++ switch (msr) { ++ case MSR_EFER: ++ if (cpu_has_load_ia32_efer()) { ++ add_atomic_switch_msr_special(vmx, ++ VM_ENTRY_LOAD_IA32_EFER, ++ VM_EXIT_LOAD_IA32_EFER, ++ GUEST_IA32_EFER, ++ HOST_IA32_EFER, ++ guest_val, host_val); ++ return; ++ } ++ break; ++ case MSR_CORE_PERF_GLOBAL_CTRL: ++ if (cpu_has_load_perf_global_ctrl()) { ++ add_atomic_switch_msr_special(vmx, ++ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, ++ VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, ++ GUEST_IA32_PERF_GLOBAL_CTRL, ++ HOST_IA32_PERF_GLOBAL_CTRL, ++ guest_val, host_val); ++ return; ++ } ++ break; ++ case MSR_IA32_PEBS_ENABLE: ++ /* PEBS needs a quiescent period after being disabled (to write ++ * a record). Disabling PEBS through VMX MSR swapping doesn't ++ * provide that period, so a CPU could write host's record into ++ * guest's memory. ++ */ ++ wrmsrl(MSR_IA32_PEBS_ENABLE, 0); ++ } ++ ++ i = vmx_find_msr_index(&m->guest, msr); ++ if (!entry_only) ++ j = vmx_find_msr_index(&m->host, msr); ++ ++ if ((i < 0 && m->guest.nr == NR_LOADSTORE_MSRS) || ++ (j < 0 && m->host.nr == NR_LOADSTORE_MSRS)) { ++ printk_once(KERN_WARNING "Not enough msr switch entries. " ++ "Can't add msr %x\n", msr); ++ return; ++ } ++ if (i < 0) { ++ i = m->guest.nr++; ++ vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); ++ } ++ m->guest.val[i].index = msr; ++ m->guest.val[i].value = guest_val; ++ ++ if (entry_only) ++ return; ++ ++ if (j < 0) { ++ j = m->host.nr++; ++ vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); ++ } ++ m->host.val[j].index = msr; ++ m->host.val[j].value = host_val; ++} ++ ++static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset) ++{ ++ u64 guest_efer = vmx->vcpu.arch.efer; ++ u64 ignore_bits = 0; ++ ++ /* Shadow paging assumes NX to be available. */ ++ if (!enable_ept) ++ guest_efer |= EFER_NX; ++ ++ /* ++ * LMA and LME handled by hardware; SCE meaningless outside long mode. ++ */ ++ ignore_bits |= EFER_SCE; ++#ifdef CONFIG_X86_64 ++ ignore_bits |= EFER_LMA | EFER_LME; ++ /* SCE is meaningful only in long mode on Intel */ ++ if (guest_efer & EFER_LMA) ++ ignore_bits &= ~(u64)EFER_SCE; ++#endif ++ ++ /* ++ * On EPT, we can't emulate NX, so we must switch EFER atomically. ++ * On CPUs that support "load IA32_EFER", always switch EFER ++ * atomically, since it's faster than switching it manually. ++ */ ++ if (cpu_has_load_ia32_efer() || ++ (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { ++ if (!(guest_efer & EFER_LMA)) ++ guest_efer &= ~EFER_LME; ++ if (guest_efer != host_efer) ++ add_atomic_switch_msr(vmx, MSR_EFER, ++ guest_efer, host_efer, false); ++ else ++ clear_atomic_switch_msr(vmx, MSR_EFER); ++ return false; ++ } else { ++ clear_atomic_switch_msr(vmx, MSR_EFER); ++ ++ guest_efer &= ~ignore_bits; ++ guest_efer |= host_efer & ignore_bits; ++ ++ vmx->guest_msrs[efer_offset].data = guest_efer; ++ vmx->guest_msrs[efer_offset].mask = ~ignore_bits; ++ ++ return true; ++ } ++} ++ ++#ifdef CONFIG_X86_32 ++/* ++ * On 32-bit kernels, VM exits still load the FS and GS bases from the ++ * VMCS rather than the segment table. KVM uses this helper to figure ++ * out the current bases to poke them into the VMCS before entry. ++ */ ++static unsigned long segment_base(u16 selector) ++{ ++ struct desc_struct *table; ++ unsigned long v; ++ ++ if (!(selector & ~SEGMENT_RPL_MASK)) ++ return 0; ++ ++ table = get_current_gdt_ro(); ++ ++ if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { ++ u16 ldt_selector = kvm_read_ldt(); ++ ++ if (!(ldt_selector & ~SEGMENT_RPL_MASK)) ++ return 0; ++ ++ table = (struct desc_struct *)segment_base(ldt_selector); ++ } ++ v = get_desc_base(&table[selector >> 3]); ++ return v; ++} ++#endif ++ ++static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) ++{ ++ u32 i; ++ ++ wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); ++ wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); ++ wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); ++ wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); ++ for (i = 0; i < addr_range; i++) { ++ wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); ++ wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); ++ } ++} ++ ++static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) ++{ ++ u32 i; ++ ++ rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); ++ rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); ++ rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); ++ rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); ++ for (i = 0; i < addr_range; i++) { ++ rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); ++ rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); ++ } ++} ++ ++static void pt_guest_enter(struct vcpu_vmx *vmx) ++{ ++ if (pt_mode == PT_MODE_SYSTEM) ++ return; ++ ++ /* ++ * GUEST_IA32_RTIT_CTL is already set in the VMCS. ++ * Save host state before VM entry. ++ */ ++ rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); ++ if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { ++ wrmsrl(MSR_IA32_RTIT_CTL, 0); ++ pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range); ++ pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range); ++ } ++} ++ ++static void pt_guest_exit(struct vcpu_vmx *vmx) ++{ ++ if (pt_mode == PT_MODE_SYSTEM) ++ return; ++ ++ if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { ++ pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range); ++ pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range); ++ } ++ ++ /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */ ++ wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); ++} ++ ++void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, ++ unsigned long fs_base, unsigned long gs_base) ++{ ++ if (unlikely(fs_sel != host->fs_sel)) { ++ if (!(fs_sel & 7)) ++ vmcs_write16(HOST_FS_SELECTOR, fs_sel); ++ else ++ vmcs_write16(HOST_FS_SELECTOR, 0); ++ host->fs_sel = fs_sel; ++ } ++ if (unlikely(gs_sel != host->gs_sel)) { ++ if (!(gs_sel & 7)) ++ vmcs_write16(HOST_GS_SELECTOR, gs_sel); ++ else ++ vmcs_write16(HOST_GS_SELECTOR, 0); ++ host->gs_sel = gs_sel; ++ } ++ if (unlikely(fs_base != host->fs_base)) { ++ vmcs_writel(HOST_FS_BASE, fs_base); ++ host->fs_base = fs_base; ++ } ++ if (unlikely(gs_base != host->gs_base)) { ++ vmcs_writel(HOST_GS_BASE, gs_base); ++ host->gs_base = gs_base; ++ } ++} ++ ++void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ struct vmcs_host_state *host_state; ++#ifdef CONFIG_X86_64 ++ int cpu = raw_smp_processor_id(); ++#endif ++ unsigned long fs_base, gs_base; ++ u16 fs_sel, gs_sel; ++ int i; ++ ++ vmx->req_immediate_exit = false; ++ ++ /* ++ * Note that guest MSRs to be saved/restored can also be changed ++ * when guest state is loaded. This happens when guest transitions ++ * to/from long-mode by setting MSR_EFER.LMA. ++ */ ++ if (!vmx->guest_msrs_ready) { ++ vmx->guest_msrs_ready = true; ++ for (i = 0; i < vmx->save_nmsrs; ++i) ++ kvm_set_shared_msr(vmx->guest_msrs[i].index, ++ vmx->guest_msrs[i].data, ++ vmx->guest_msrs[i].mask); ++ ++ } ++ if (vmx->guest_state_loaded) ++ return; ++ ++ host_state = &vmx->loaded_vmcs->host_state; ++ ++ /* ++ * Set host fs and gs selectors. Unfortunately, 22.2.3 does not ++ * allow segment selectors with cpl > 0 or ti == 1. ++ */ ++ host_state->ldt_sel = kvm_read_ldt(); ++ ++#ifdef CONFIG_X86_64 ++ savesegment(ds, host_state->ds_sel); ++ savesegment(es, host_state->es_sel); ++ ++ gs_base = cpu_kernelmode_gs_base(cpu); ++ if (likely(is_64bit_mm(current->mm))) { ++ save_fsgs_for_kvm(); ++ fs_sel = current->thread.fsindex; ++ gs_sel = current->thread.gsindex; ++ fs_base = current->thread.fsbase; ++ vmx->msr_host_kernel_gs_base = current->thread.gsbase; ++ } else { ++ savesegment(fs, fs_sel); ++ savesegment(gs, gs_sel); ++ fs_base = read_msr(MSR_FS_BASE); ++ vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); ++ } ++ ++ wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); ++#else ++ savesegment(fs, fs_sel); ++ savesegment(gs, gs_sel); ++ fs_base = segment_base(fs_sel); ++ gs_base = segment_base(gs_sel); ++#endif ++ ++ vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); ++ vmx->guest_state_loaded = true; ++} ++ ++static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) ++{ ++ struct vmcs_host_state *host_state; ++ ++ if (!vmx->guest_state_loaded) ++ return; ++ ++ host_state = &vmx->loaded_vmcs->host_state; ++ ++ ++vmx->vcpu.stat.host_state_reload; ++ ++#ifdef CONFIG_X86_64 ++ rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); ++#endif ++ if (host_state->ldt_sel || (host_state->gs_sel & 7)) { ++ kvm_load_ldt(host_state->ldt_sel); ++#ifdef CONFIG_X86_64 ++ load_gs_index(host_state->gs_sel); ++#else ++ loadsegment(gs, host_state->gs_sel); ++#endif ++ } ++ if (host_state->fs_sel & 7) ++ loadsegment(fs, host_state->fs_sel); ++#ifdef CONFIG_X86_64 ++ if (unlikely(host_state->ds_sel | host_state->es_sel)) { ++ loadsegment(ds, host_state->ds_sel); ++ loadsegment(es, host_state->es_sel); ++ } ++#endif ++ invalidate_tss_limit(); ++#ifdef CONFIG_X86_64 ++ wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); ++#endif ++ load_fixmap_gdt(raw_smp_processor_id()); ++ vmx->guest_state_loaded = false; ++ vmx->guest_msrs_ready = false; ++} ++ ++#ifdef CONFIG_X86_64 ++static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) ++{ ++ preempt_disable(); ++ if (vmx->guest_state_loaded) ++ rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); ++ preempt_enable(); ++ return vmx->msr_guest_kernel_gs_base; ++} ++ ++static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) ++{ ++ preempt_disable(); ++ if (vmx->guest_state_loaded) ++ wrmsrl(MSR_KERNEL_GS_BASE, data); ++ preempt_enable(); ++ vmx->msr_guest_kernel_gs_base = data; ++} ++#endif ++ ++static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu) ++{ ++ struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); ++ struct pi_desc old, new; ++ unsigned int dest; ++ ++ /* ++ * In case of hot-plug or hot-unplug, we may have to undo ++ * vmx_vcpu_pi_put even if there is no assigned device. And we ++ * always keep PI.NDST up to date for simplicity: it makes the ++ * code easier, and CPU migration is not a fast path. ++ */ ++ if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu) ++ return; ++ ++ /* ++ * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change ++ * PI.NDST: pi_post_block is the one expected to change PID.NDST and the ++ * wakeup handler expects the vCPU to be on the blocked_vcpu_list that ++ * matches PI.NDST. Otherwise, a vcpu may not be able to be woken up ++ * correctly. ++ */ ++ if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) { ++ pi_clear_sn(pi_desc); ++ goto after_clear_sn; ++ } ++ ++ /* The full case. */ ++ do { ++ old.control = new.control = pi_desc->control; ++ ++ dest = cpu_physical_id(cpu); ++ ++ if (x2apic_enabled()) ++ new.ndst = dest; ++ else ++ new.ndst = (dest << 8) & 0xFF00; ++ ++ new.sn = 0; ++ } while (cmpxchg64(&pi_desc->control, old.control, ++ new.control) != old.control); ++ ++after_clear_sn: ++ ++ /* ++ * Clear SN before reading the bitmap. The VT-d firmware ++ * writes the bitmap and reads SN atomically (5.2.3 in the ++ * spec), so it doesn't really have a memory barrier that ++ * pairs with this, but we cannot do that and we need one. ++ */ ++ smp_mb__after_atomic(); ++ ++ if (!pi_is_pir_empty(pi_desc)) ++ pi_set_on(pi_desc); ++} ++ ++void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ bool already_loaded = vmx->loaded_vmcs->cpu == cpu; ++ ++ if (!already_loaded) { ++ loaded_vmcs_clear(vmx->loaded_vmcs); ++ local_irq_disable(); ++ crash_disable_local_vmclear(cpu); ++ ++ /* ++ * Read loaded_vmcs->cpu should be before fetching ++ * loaded_vmcs->loaded_vmcss_on_cpu_link. ++ * See the comments in __loaded_vmcs_clear(). ++ */ ++ smp_rmb(); ++ ++ list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, ++ &per_cpu(loaded_vmcss_on_cpu, cpu)); ++ crash_enable_local_vmclear(cpu); ++ local_irq_enable(); ++ } ++ ++ if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) { ++ per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; ++ vmcs_load(vmx->loaded_vmcs->vmcs); ++ indirect_branch_prediction_barrier(); ++ } ++ ++ if (!already_loaded) { ++ void *gdt = get_current_gdt_ro(); ++ unsigned long sysenter_esp; ++ ++ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); ++ ++ /* ++ * Linux uses per-cpu TSS and GDT, so set these when switching ++ * processors. See 22.2.4. ++ */ ++ vmcs_writel(HOST_TR_BASE, ++ (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); ++ vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ ++ ++ rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); ++ vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ ++ ++ vmx->loaded_vmcs->cpu = cpu; ++ } ++ ++ /* Setup TSC multiplier */ ++ if (kvm_has_tsc_control && ++ vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) ++ decache_tsc_multiplier(vmx); ++} ++ ++/* ++ * Switches to specified vcpu, until a matching vcpu_put(), but assumes ++ * vcpu mutex is already taken. ++ */ ++void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ ++ vmx_vcpu_load_vmcs(vcpu, cpu); ++ ++ vmx_vcpu_pi_load(vcpu, cpu); ++ ++ vmx->host_pkru = read_pkru(); ++ vmx->host_debugctlmsr = get_debugctlmsr(); ++} ++ ++static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu) ++{ ++ struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); ++ ++ if (!kvm_arch_has_assigned_device(vcpu->kvm) || ++ !irq_remapping_cap(IRQ_POSTING_CAP) || ++ !kvm_vcpu_apicv_active(vcpu)) ++ return; ++ ++ /* Set SN when the vCPU is preempted */ ++ if (vcpu->preempted) ++ pi_set_sn(pi_desc); ++} ++ ++static void vmx_vcpu_put(struct kvm_vcpu *vcpu) ++{ ++ vmx_vcpu_pi_put(vcpu); ++ ++ vmx_prepare_switch_to_host(to_vmx(vcpu)); ++} ++ ++static bool emulation_required(struct kvm_vcpu *vcpu) ++{ ++ return emulate_invalid_guest_state && !guest_state_valid(vcpu); ++} ++ ++static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu); ++ ++unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ unsigned long rflags, save_rflags; ++ ++ if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { ++ kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); ++ rflags = vmcs_readl(GUEST_RFLAGS); ++ if (vmx->rmode.vm86_active) { ++ rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; ++ save_rflags = vmx->rmode.save_rflags; ++ rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; ++ } ++ vmx->rflags = rflags; ++ } ++ return vmx->rflags; ++} ++ ++void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ unsigned long old_rflags; ++ ++ if (enable_unrestricted_guest) { ++ kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); ++ vmx->rflags = rflags; ++ vmcs_writel(GUEST_RFLAGS, rflags); ++ return; ++ } ++ ++ old_rflags = vmx_get_rflags(vcpu); ++ vmx->rflags = rflags; ++ if (vmx->rmode.vm86_active) { ++ vmx->rmode.save_rflags = rflags; ++ rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; ++ } ++ vmcs_writel(GUEST_RFLAGS, rflags); ++ ++ if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) ++ vmx->emulation_required = emulation_required(vcpu); ++} ++ ++u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) ++{ ++ u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); ++ int ret = 0; ++ ++ if (interruptibility & GUEST_INTR_STATE_STI) ++ ret |= KVM_X86_SHADOW_INT_STI; ++ if (interruptibility & GUEST_INTR_STATE_MOV_SS) ++ ret |= KVM_X86_SHADOW_INT_MOV_SS; ++ ++ return ret; ++} ++ ++void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) ++{ ++ u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); ++ u32 interruptibility = interruptibility_old; ++ ++ interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); ++ ++ if (mask & KVM_X86_SHADOW_INT_MOV_SS) ++ interruptibility |= GUEST_INTR_STATE_MOV_SS; ++ else if (mask & KVM_X86_SHADOW_INT_STI) ++ interruptibility |= GUEST_INTR_STATE_STI; ++ ++ if ((interruptibility != interruptibility_old)) ++ vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); ++} ++ ++static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ unsigned long value; ++ ++ /* ++ * Any MSR write that attempts to change bits marked reserved will ++ * case a #GP fault. ++ */ ++ if (data & vmx->pt_desc.ctl_bitmask) ++ return 1; ++ ++ /* ++ * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will ++ * result in a #GP unless the same write also clears TraceEn. ++ */ ++ if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && ++ ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) ++ return 1; ++ ++ /* ++ * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit ++ * and FabricEn would cause #GP, if ++ * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 ++ */ ++ if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && ++ !(data & RTIT_CTL_FABRIC_EN) && ++ !intel_pt_validate_cap(vmx->pt_desc.caps, ++ PT_CAP_single_range_output)) ++ return 1; ++ ++ /* ++ * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that ++ * utilize encodings marked reserved will casue a #GP fault. ++ */ ++ value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); ++ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && ++ !test_bit((data & RTIT_CTL_MTC_RANGE) >> ++ RTIT_CTL_MTC_RANGE_OFFSET, &value)) ++ return 1; ++ value = intel_pt_validate_cap(vmx->pt_desc.caps, ++ PT_CAP_cycle_thresholds); ++ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && ++ !test_bit((data & RTIT_CTL_CYC_THRESH) >> ++ RTIT_CTL_CYC_THRESH_OFFSET, &value)) ++ return 1; ++ value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); ++ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && ++ !test_bit((data & RTIT_CTL_PSB_FREQ) >> ++ RTIT_CTL_PSB_FREQ_OFFSET, &value)) ++ return 1; ++ ++ /* ++ * If ADDRx_CFG is reserved or the encodings is >2 will ++ * cause a #GP fault. ++ */ ++ value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; ++ if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2)) ++ return 1; ++ value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; ++ if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2)) ++ return 1; ++ value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; ++ if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2)) ++ return 1; ++ value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; ++ if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2)) ++ return 1; ++ ++ return 0; ++} ++ ++static int skip_emulated_instruction(struct kvm_vcpu *vcpu) ++{ ++ unsigned long rip; ++ ++ /* ++ * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on ++ * undefined behavior: Intel's SDM doesn't mandate the VMCS field be ++ * set when EPT misconfig occurs. In practice, real hardware updates ++ * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors ++ * (namely Hyper-V) don't set it due to it being undefined behavior, ++ * i.e. we end up advancing IP with some random value. ++ */ ++ if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || ++ to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) { ++ rip = kvm_rip_read(vcpu); ++ rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN); ++ kvm_rip_write(vcpu, rip); ++ } else { ++ if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) ++ return 0; ++ } ++ ++ /* skipping an emulated instruction also counts */ ++ vmx_set_interrupt_shadow(vcpu, 0); ++ ++ return 1; ++} ++ ++static void vmx_clear_hlt(struct kvm_vcpu *vcpu) ++{ ++ /* ++ * Ensure that we clear the HLT state in the VMCS. We don't need to ++ * explicitly skip the instruction because if the HLT state is set, ++ * then the instruction is already executing and RIP has already been ++ * advanced. ++ */ ++ if (kvm_hlt_in_guest(vcpu->kvm) && ++ vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) ++ vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); ++} ++ ++static void vmx_queue_exception(struct kvm_vcpu *vcpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ unsigned nr = vcpu->arch.exception.nr; ++ bool has_error_code = vcpu->arch.exception.has_error_code; ++ u32 error_code = vcpu->arch.exception.error_code; ++ u32 intr_info = nr | INTR_INFO_VALID_MASK; ++ ++ kvm_deliver_exception_payload(vcpu); ++ ++ if (has_error_code) { ++ vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); ++ intr_info |= INTR_INFO_DELIVER_CODE_MASK; ++ } ++ ++ if (vmx->rmode.vm86_active) { ++ int inc_eip = 0; ++ if (kvm_exception_is_soft(nr)) ++ inc_eip = vcpu->arch.event_exit_inst_len; ++ kvm_inject_realmode_interrupt(vcpu, nr, inc_eip); ++ return; ++ } ++ ++ WARN_ON_ONCE(vmx->emulation_required); ++ ++ if (kvm_exception_is_soft(nr)) { ++ vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, ++ vmx->vcpu.arch.event_exit_inst_len); ++ intr_info |= INTR_TYPE_SOFT_EXCEPTION; ++ } else ++ intr_info |= INTR_TYPE_HARD_EXCEPTION; ++ ++ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); ++ ++ vmx_clear_hlt(vcpu); ++} ++ ++static bool vmx_rdtscp_supported(void) ++{ ++ return cpu_has_vmx_rdtscp(); ++} ++ ++static bool vmx_invpcid_supported(void) ++{ ++ return cpu_has_vmx_invpcid(); ++} ++ ++/* ++ * Swap MSR entry in host/guest MSR entry array. ++ */ ++static void move_msr_up(struct vcpu_vmx *vmx, int from, int to) ++{ ++ struct shared_msr_entry tmp; ++ ++ tmp = vmx->guest_msrs[to]; ++ vmx->guest_msrs[to] = vmx->guest_msrs[from]; ++ vmx->guest_msrs[from] = tmp; ++} ++ ++/* ++ * Set up the vmcs to automatically save and restore system ++ * msrs. Don't touch the 64-bit msrs if the guest is in legacy ++ * mode, as fiddling with msrs is very expensive. ++ */ ++static void setup_msrs(struct vcpu_vmx *vmx) ++{ ++ int save_nmsrs, index; ++ ++ save_nmsrs = 0; ++#ifdef CONFIG_X86_64 ++ /* ++ * The SYSCALL MSRs are only needed on long mode guests, and only ++ * when EFER.SCE is set. ++ */ ++ if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) { ++ index = __find_msr_index(vmx, MSR_STAR); ++ if (index >= 0) ++ move_msr_up(vmx, index, save_nmsrs++); ++ index = __find_msr_index(vmx, MSR_LSTAR); ++ if (index >= 0) ++ move_msr_up(vmx, index, save_nmsrs++); ++ index = __find_msr_index(vmx, MSR_SYSCALL_MASK); ++ if (index >= 0) ++ move_msr_up(vmx, index, save_nmsrs++); ++ } ++#endif ++ index = __find_msr_index(vmx, MSR_EFER); ++ if (index >= 0 && update_transition_efer(vmx, index)) ++ move_msr_up(vmx, index, save_nmsrs++); ++ index = __find_msr_index(vmx, MSR_TSC_AUX); ++ if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP)) ++ move_msr_up(vmx, index, save_nmsrs++); ++ index = __find_msr_index(vmx, MSR_IA32_TSX_CTRL); ++ if (index >= 0) ++ move_msr_up(vmx, index, save_nmsrs++); ++ ++ vmx->save_nmsrs = save_nmsrs; ++ vmx->guest_msrs_ready = false; ++ ++ if (cpu_has_vmx_msr_bitmap()) ++ vmx_update_msr_bitmap(&vmx->vcpu); ++} ++ ++static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu) ++{ ++ struct vmcs12 *vmcs12 = get_vmcs12(vcpu); ++ ++ if (is_guest_mode(vcpu) && ++ (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)) ++ return vcpu->arch.tsc_offset - vmcs12->tsc_offset; ++ ++ return vcpu->arch.tsc_offset; ++} ++ ++static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) ++{ ++ struct vmcs12 *vmcs12 = get_vmcs12(vcpu); ++ u64 g_tsc_offset = 0; ++ ++ /* ++ * We're here if L1 chose not to trap WRMSR to TSC. According ++ * to the spec, this should set L1's TSC; The offset that L1 ++ * set for L2 remains unchanged, and still needs to be added ++ * to the newly set TSC to get L2's TSC. ++ */ ++ if (is_guest_mode(vcpu) && ++ (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)) ++ g_tsc_offset = vmcs12->tsc_offset; ++ ++ trace_kvm_write_tsc_offset(vcpu->vcpu_id, ++ vcpu->arch.tsc_offset - g_tsc_offset, ++ offset); ++ vmcs_write64(TSC_OFFSET, offset + g_tsc_offset); ++ return offset + g_tsc_offset; ++} ++ ++/* ++ * nested_vmx_allowed() checks whether a guest should be allowed to use VMX ++ * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for ++ * all guests if the "nested" module option is off, and can also be disabled ++ * for a single guest by disabling its VMX cpuid bit. ++ */ ++bool nested_vmx_allowed(struct kvm_vcpu *vcpu) ++{ ++ return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); ++} ++ ++static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, ++ uint64_t val) ++{ ++ uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; ++ ++ return !(val & ~valid_bits); ++} ++ ++static int vmx_get_msr_feature(struct kvm_msr_entry *msr) ++{ ++ switch (msr->index) { ++ case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: ++ if (!nested) ++ return 1; ++ return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); ++ default: ++ return 1; ++ } ++} ++ ++/* ++ * Reads an msr value (of 'msr_index') into 'pdata'. ++ * Returns 0 on success, non-0 otherwise. ++ * Assumes vcpu_load() was already called. ++ */ ++static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ struct shared_msr_entry *msr; ++ u32 index; ++ ++ switch (msr_info->index) { ++#ifdef CONFIG_X86_64 ++ case MSR_FS_BASE: ++ msr_info->data = vmcs_readl(GUEST_FS_BASE); ++ break; ++ case MSR_GS_BASE: ++ msr_info->data = vmcs_readl(GUEST_GS_BASE); ++ break; ++ case MSR_KERNEL_GS_BASE: ++ msr_info->data = vmx_read_guest_kernel_gs_base(vmx); ++ break; ++#endif ++ case MSR_EFER: ++ return kvm_get_msr_common(vcpu, msr_info); ++ case MSR_IA32_TSX_CTRL: ++ if (!msr_info->host_initiated && ++ !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) ++ return 1; ++ goto find_shared_msr; ++ case MSR_IA32_UMWAIT_CONTROL: ++ if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) ++ return 1; ++ ++ msr_info->data = vmx->msr_ia32_umwait_control; ++ break; ++ case MSR_IA32_SPEC_CTRL: ++ if (!msr_info->host_initiated && ++ !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) ++ return 1; ++ ++ msr_info->data = to_vmx(vcpu)->spec_ctrl; ++ break; ++ case MSR_IA32_SYSENTER_CS: ++ msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); ++ break; ++ case MSR_IA32_SYSENTER_EIP: ++ msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); ++ break; ++ case MSR_IA32_SYSENTER_ESP: ++ msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); ++ break; ++ case MSR_IA32_BNDCFGS: ++ if (!kvm_mpx_supported() || ++ (!msr_info->host_initiated && ++ !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) ++ return 1; ++ msr_info->data = vmcs_read64(GUEST_BNDCFGS); ++ break; ++ case MSR_IA32_MCG_EXT_CTL: ++ if (!msr_info->host_initiated && ++ !(vmx->msr_ia32_feature_control & ++ FEATURE_CONTROL_LMCE)) ++ return 1; ++ msr_info->data = vcpu->arch.mcg_ext_ctl; ++ break; ++ case MSR_IA32_FEATURE_CONTROL: ++ msr_info->data = vmx->msr_ia32_feature_control; ++ break; ++ case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: ++ if (!nested_vmx_allowed(vcpu)) ++ return 1; ++ return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, ++ &msr_info->data); ++ case MSR_IA32_RTIT_CTL: ++ if (pt_mode != PT_MODE_HOST_GUEST) ++ return 1; ++ msr_info->data = vmx->pt_desc.guest.ctl; ++ break; ++ case MSR_IA32_RTIT_STATUS: ++ if (pt_mode != PT_MODE_HOST_GUEST) ++ return 1; ++ msr_info->data = vmx->pt_desc.guest.status; ++ break; ++ case MSR_IA32_RTIT_CR3_MATCH: ++ if ((pt_mode != PT_MODE_HOST_GUEST) || ++ !intel_pt_validate_cap(vmx->pt_desc.caps, ++ PT_CAP_cr3_filtering)) ++ return 1; ++ msr_info->data = vmx->pt_desc.guest.cr3_match; ++ break; ++ case MSR_IA32_RTIT_OUTPUT_BASE: ++ if ((pt_mode != PT_MODE_HOST_GUEST) || ++ (!intel_pt_validate_cap(vmx->pt_desc.caps, ++ PT_CAP_topa_output) && ++ !intel_pt_validate_cap(vmx->pt_desc.caps, ++ PT_CAP_single_range_output))) ++ return 1; ++ msr_info->data = vmx->pt_desc.guest.output_base; ++ break; ++ case MSR_IA32_RTIT_OUTPUT_MASK: ++ if ((pt_mode != PT_MODE_HOST_GUEST) || ++ (!intel_pt_validate_cap(vmx->pt_desc.caps, ++ PT_CAP_topa_output) && ++ !intel_pt_validate_cap(vmx->pt_desc.caps, ++ PT_CAP_single_range_output))) ++ return 1; ++ msr_info->data = vmx->pt_desc.guest.output_mask; ++ break; ++ case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: ++ index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; ++ if ((pt_mode != PT_MODE_HOST_GUEST) || ++ (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps, ++ PT_CAP_num_address_ranges))) ++ return 1; ++ if (is_noncanonical_address(data, vcpu)) ++ return 1; ++ if (index % 2) ++ msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; ++ else ++ msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; ++ break; ++ case MSR_TSC_AUX: ++ if (!msr_info->host_initiated && ++ !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) ++ return 1; ++ goto find_shared_msr; ++ default: ++ find_shared_msr: ++ msr = find_msr_entry(vmx, msr_info->index); ++ if (msr) { ++ msr_info->data = msr->data; ++ break; ++ } ++ return kvm_get_msr_common(vcpu, msr_info); ++ } ++ ++ return 0; ++} ++ ++/* ++ * Writes msr value into the appropriate "register". ++ * Returns 0 on success, non-0 otherwise. ++ * Assumes vcpu_load() was already called. ++ */ ++static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ struct shared_msr_entry *msr; ++ int ret = 0; ++ u32 msr_index = msr_info->index; ++ u64 data = msr_info->data; ++ u32 index; ++ ++ switch (msr_index) { ++ case MSR_EFER: ++ ret = kvm_set_msr_common(vcpu, msr_info); ++ break; ++#ifdef CONFIG_X86_64 ++ case MSR_FS_BASE: ++ vmx_segment_cache_clear(vmx); ++ vmcs_writel(GUEST_FS_BASE, data); ++ break; ++ case MSR_GS_BASE: ++ vmx_segment_cache_clear(vmx); ++ vmcs_writel(GUEST_GS_BASE, data); ++ break; ++ case MSR_KERNEL_GS_BASE: ++ vmx_write_guest_kernel_gs_base(vmx, data); ++ break; ++#endif ++ case MSR_IA32_SYSENTER_CS: ++ if (is_guest_mode(vcpu)) ++ get_vmcs12(vcpu)->guest_sysenter_cs = data; ++ vmcs_write32(GUEST_SYSENTER_CS, data); ++ break; ++ case MSR_IA32_SYSENTER_EIP: ++ if (is_guest_mode(vcpu)) ++ get_vmcs12(vcpu)->guest_sysenter_eip = data; ++ vmcs_writel(GUEST_SYSENTER_EIP, data); ++ break; ++ case MSR_IA32_SYSENTER_ESP: ++ if (is_guest_mode(vcpu)) ++ get_vmcs12(vcpu)->guest_sysenter_esp = data; ++ vmcs_writel(GUEST_SYSENTER_ESP, data); ++ break; ++ case MSR_IA32_DEBUGCTLMSR: ++ if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & ++ VM_EXIT_SAVE_DEBUG_CONTROLS) ++ get_vmcs12(vcpu)->guest_ia32_debugctl = data; ++ ++ ret = kvm_set_msr_common(vcpu, msr_info); ++ break; ++ ++ case MSR_IA32_BNDCFGS: ++ if (!kvm_mpx_supported() || ++ (!msr_info->host_initiated && ++ !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) ++ return 1; ++ if (is_noncanonical_address(data & PAGE_MASK, vcpu) || ++ (data & MSR_IA32_BNDCFGS_RSVD)) ++ return 1; ++ vmcs_write64(GUEST_BNDCFGS, data); ++ break; ++ case MSR_IA32_UMWAIT_CONTROL: ++ if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) ++ return 1; ++ ++ /* The reserved bit 1 and non-32 bit [63:32] should be zero */ ++ if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) ++ return 1; ++ ++ vmx->msr_ia32_umwait_control = data; ++ break; ++ case MSR_IA32_SPEC_CTRL: ++ if (!msr_info->host_initiated && ++ !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) ++ return 1; ++ ++ /* The STIBP bit doesn't fault even if it's not advertised */ ++ if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD)) ++ return 1; ++ ++ vmx->spec_ctrl = data; ++ ++ if (!data) ++ break; ++ ++ /* ++ * For non-nested: ++ * When it's written (to non-zero) for the first time, pass ++ * it through. ++ * ++ * For nested: ++ * The handling of the MSR bitmap for L2 guests is done in ++ * nested_vmx_prepare_msr_bitmap. We should not touch the ++ * vmcs02.msr_bitmap here since it gets completely overwritten ++ * in the merging. We update the vmcs01 here for L1 as well ++ * since it will end up touching the MSR anyway now. ++ */ ++ vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, ++ MSR_IA32_SPEC_CTRL, ++ MSR_TYPE_RW); ++ break; ++ case MSR_IA32_TSX_CTRL: ++ if (!msr_info->host_initiated && ++ !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) ++ return 1; ++ if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) ++ return 1; ++ goto find_shared_msr; ++ case MSR_IA32_PRED_CMD: ++ if (!msr_info->host_initiated && ++ !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) ++ return 1; ++ ++ if (data & ~PRED_CMD_IBPB) ++ return 1; ++ ++ if (!data) ++ break; ++ ++ wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); ++ ++ /* ++ * For non-nested: ++ * When it's written (to non-zero) for the first time, pass ++ * it through. ++ * ++ * For nested: ++ * The handling of the MSR bitmap for L2 guests is done in ++ * nested_vmx_prepare_msr_bitmap. We should not touch the ++ * vmcs02.msr_bitmap here since it gets completely overwritten ++ * in the merging. ++ */ ++ vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD, ++ MSR_TYPE_W); ++ break; ++ case MSR_IA32_CR_PAT: ++ if (!kvm_pat_valid(data)) ++ return 1; ++ ++ if (is_guest_mode(vcpu) && ++ get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) ++ get_vmcs12(vcpu)->guest_ia32_pat = data; ++ ++ if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { ++ vmcs_write64(GUEST_IA32_PAT, data); ++ vcpu->arch.pat = data; ++ break; ++ } ++ ret = kvm_set_msr_common(vcpu, msr_info); ++ break; ++ case MSR_IA32_TSC_ADJUST: ++ ret = kvm_set_msr_common(vcpu, msr_info); ++ break; ++ case MSR_IA32_MCG_EXT_CTL: ++ if ((!msr_info->host_initiated && ++ !(to_vmx(vcpu)->msr_ia32_feature_control & ++ FEATURE_CONTROL_LMCE)) || ++ (data & ~MCG_EXT_CTL_LMCE_EN)) ++ return 1; ++ vcpu->arch.mcg_ext_ctl = data; ++ break; ++ case MSR_IA32_FEATURE_CONTROL: ++ if (!vmx_feature_control_msr_valid(vcpu, data) || ++ (to_vmx(vcpu)->msr_ia32_feature_control & ++ FEATURE_CONTROL_LOCKED && !msr_info->host_initiated)) ++ return 1; ++ vmx->msr_ia32_feature_control = data; ++ if (msr_info->host_initiated && data == 0) ++ vmx_leave_nested(vcpu); ++ break; ++ case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: ++ if (!msr_info->host_initiated) ++ return 1; /* they are read-only */ ++ if (!nested_vmx_allowed(vcpu)) ++ return 1; ++ return vmx_set_vmx_msr(vcpu, msr_index, data); ++ case MSR_IA32_RTIT_CTL: ++ if ((pt_mode != PT_MODE_HOST_GUEST) || ++ vmx_rtit_ctl_check(vcpu, data) || ++ vmx->nested.vmxon) ++ return 1; ++ vmcs_write64(GUEST_IA32_RTIT_CTL, data); ++ vmx->pt_desc.guest.ctl = data; ++ pt_update_intercept_for_msr(vmx); ++ break; ++ case MSR_IA32_RTIT_STATUS: ++ if ((pt_mode != PT_MODE_HOST_GUEST) || ++ (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || ++ (data & MSR_IA32_RTIT_STATUS_MASK)) ++ return 1; ++ vmx->pt_desc.guest.status = data; ++ break; ++ case MSR_IA32_RTIT_CR3_MATCH: ++ if ((pt_mode != PT_MODE_HOST_GUEST) || ++ (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || ++ !intel_pt_validate_cap(vmx->pt_desc.caps, ++ PT_CAP_cr3_filtering)) ++ return 1; ++ vmx->pt_desc.guest.cr3_match = data; ++ break; ++ case MSR_IA32_RTIT_OUTPUT_BASE: ++ if ((pt_mode != PT_MODE_HOST_GUEST) || ++ (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || ++ (!intel_pt_validate_cap(vmx->pt_desc.caps, ++ PT_CAP_topa_output) && ++ !intel_pt_validate_cap(vmx->pt_desc.caps, ++ PT_CAP_single_range_output)) || ++ (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK)) ++ return 1; ++ vmx->pt_desc.guest.output_base = data; ++ break; ++ case MSR_IA32_RTIT_OUTPUT_MASK: ++ if ((pt_mode != PT_MODE_HOST_GUEST) || ++ (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || ++ (!intel_pt_validate_cap(vmx->pt_desc.caps, ++ PT_CAP_topa_output) && ++ !intel_pt_validate_cap(vmx->pt_desc.caps, ++ PT_CAP_single_range_output))) ++ return 1; ++ vmx->pt_desc.guest.output_mask = data; ++ break; ++ case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: ++ index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; ++ if ((pt_mode != PT_MODE_HOST_GUEST) || ++ (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || ++ (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps, ++ PT_CAP_num_address_ranges))) ++ return 1; ++ if (is_noncanonical_address(data, vcpu)) ++ return 1; ++ if (index % 2) ++ vmx->pt_desc.guest.addr_b[index / 2] = data; ++ else ++ vmx->pt_desc.guest.addr_a[index / 2] = data; ++ break; ++ case MSR_TSC_AUX: ++ if (!msr_info->host_initiated && ++ !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) ++ return 1; ++ /* Check reserved bit, higher 32 bits should be zero */ ++ if ((data >> 32) != 0) ++ return 1; ++ goto find_shared_msr; ++ ++ default: ++ find_shared_msr: ++ msr = find_msr_entry(vmx, msr_index); ++ if (msr) ++ ret = vmx_set_guest_msr(vmx, msr, data); ++ else ++ ret = kvm_set_msr_common(vcpu, msr_info); ++ } ++ ++ return ret; ++} ++ ++static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) ++{ ++ kvm_register_mark_available(vcpu, reg); ++ ++ switch (reg) { ++ case VCPU_REGS_RSP: ++ vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); ++ break; ++ case VCPU_REGS_RIP: ++ vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); ++ break; ++ case VCPU_EXREG_PDPTR: ++ if (enable_ept) ++ ept_save_pdptrs(vcpu); ++ break; ++ case VCPU_EXREG_CR3: ++ if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu))) ++ vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); ++ break; ++ default: ++ WARN_ON_ONCE(1); ++ break; ++ } ++} ++ ++static __init int cpu_has_kvm_support(void) ++{ ++ return cpu_has_vmx(); ++} ++ ++static __init int vmx_disabled_by_bios(void) ++{ ++ u64 msr; ++ ++ rdmsrl(MSR_IA32_FEATURE_CONTROL, msr); ++ if (msr & FEATURE_CONTROL_LOCKED) { ++ /* launched w/ TXT and VMX disabled */ ++ if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) ++ && tboot_enabled()) ++ return 1; ++ /* launched w/o TXT and VMX only enabled w/ TXT */ ++ if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) ++ && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) ++ && !tboot_enabled()) { ++ printk(KERN_WARNING "kvm: disable TXT in the BIOS or " ++ "activate TXT before enabling KVM\n"); ++ return 1; ++ } ++ /* launched w/o TXT and VMX disabled */ ++ if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) ++ && !tboot_enabled()) ++ return 1; ++ } ++ ++ return 0; ++} ++ ++static void kvm_cpu_vmxon(u64 addr) ++{ ++ cr4_set_bits(X86_CR4_VMXE); ++ intel_pt_handle_vmx(1); ++ ++ asm volatile ("vmxon %0" : : "m"(addr)); ++} ++ ++static int hardware_enable(void) ++{ ++ int cpu = raw_smp_processor_id(); ++ u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); ++ u64 old, test_bits; ++ ++ if (cr4_read_shadow() & X86_CR4_VMXE) ++ return -EBUSY; ++ ++ /* ++ * This can happen if we hot-added a CPU but failed to allocate ++ * VP assist page for it. ++ */ ++ if (static_branch_unlikely(&enable_evmcs) && ++ !hv_get_vp_assist_page(cpu)) ++ return -EFAULT; ++ ++ INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); ++ INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu)); ++ spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); ++ ++ /* ++ * Now we can enable the vmclear operation in kdump ++ * since the loaded_vmcss_on_cpu list on this cpu ++ * has been initialized. ++ * ++ * Though the cpu is not in VMX operation now, there ++ * is no problem to enable the vmclear operation ++ * for the loaded_vmcss_on_cpu list is empty! ++ */ ++ crash_enable_local_vmclear(cpu); ++ ++ rdmsrl(MSR_IA32_FEATURE_CONTROL, old); ++ ++ test_bits = FEATURE_CONTROL_LOCKED; ++ test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; ++ if (tboot_enabled()) ++ test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX; ++ ++ if ((old & test_bits) != test_bits) { ++ /* enable and lock */ ++ wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits); ++ } ++ kvm_cpu_vmxon(phys_addr); ++ if (enable_ept) ++ ept_sync_global(); ++ ++ return 0; ++} ++ ++static void vmclear_local_loaded_vmcss(void) ++{ ++ int cpu = raw_smp_processor_id(); ++ struct loaded_vmcs *v, *n; ++ ++ list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), ++ loaded_vmcss_on_cpu_link) ++ __loaded_vmcs_clear(v); ++} ++ ++ ++/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot() ++ * tricks. ++ */ ++static void kvm_cpu_vmxoff(void) ++{ ++ asm volatile (__ex("vmxoff")); ++ ++ intel_pt_handle_vmx(0); ++ cr4_clear_bits(X86_CR4_VMXE); ++} ++ ++static void hardware_disable(void) ++{ ++ vmclear_local_loaded_vmcss(); ++ kvm_cpu_vmxoff(); ++} ++ ++static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, ++ u32 msr, u32 *result) ++{ ++ u32 vmx_msr_low, vmx_msr_high; ++ u32 ctl = ctl_min | ctl_opt; ++ ++ rdmsr(msr, vmx_msr_low, vmx_msr_high); ++ ++ ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ ++ ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ ++ ++ /* Ensure minimum (required) set of control bits are supported. */ ++ if (ctl_min & ~ctl) ++ return -EIO; ++ ++ *result = ctl; ++ return 0; ++} ++ ++static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf, ++ struct vmx_capability *vmx_cap) ++{ ++ u32 vmx_msr_low, vmx_msr_high; ++ u32 min, opt, min2, opt2; ++ u32 _pin_based_exec_control = 0; ++ u32 _cpu_based_exec_control = 0; ++ u32 _cpu_based_2nd_exec_control = 0; ++ u32 _vmexit_control = 0; ++ u32 _vmentry_control = 0; ++ ++ memset(vmcs_conf, 0, sizeof(*vmcs_conf)); ++ min = CPU_BASED_HLT_EXITING | ++#ifdef CONFIG_X86_64 ++ CPU_BASED_CR8_LOAD_EXITING | ++ CPU_BASED_CR8_STORE_EXITING | ++#endif ++ CPU_BASED_CR3_LOAD_EXITING | ++ CPU_BASED_CR3_STORE_EXITING | ++ CPU_BASED_UNCOND_IO_EXITING | ++ CPU_BASED_MOV_DR_EXITING | ++ CPU_BASED_USE_TSC_OFFSETTING | ++ CPU_BASED_MWAIT_EXITING | ++ CPU_BASED_MONITOR_EXITING | ++ CPU_BASED_INVLPG_EXITING | ++ CPU_BASED_RDPMC_EXITING; ++ ++ opt = CPU_BASED_TPR_SHADOW | ++ CPU_BASED_USE_MSR_BITMAPS | ++ CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; ++ if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, ++ &_cpu_based_exec_control) < 0) ++ return -EIO; ++#ifdef CONFIG_X86_64 ++ if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) ++ _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & ++ ~CPU_BASED_CR8_STORE_EXITING; ++#endif ++ if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { ++ min2 = 0; ++ opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | ++ SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | ++ SECONDARY_EXEC_WBINVD_EXITING | ++ SECONDARY_EXEC_ENABLE_VPID | ++ SECONDARY_EXEC_ENABLE_EPT | ++ SECONDARY_EXEC_UNRESTRICTED_GUEST | ++ SECONDARY_EXEC_PAUSE_LOOP_EXITING | ++ SECONDARY_EXEC_DESC | ++ SECONDARY_EXEC_RDTSCP | ++ SECONDARY_EXEC_ENABLE_INVPCID | ++ SECONDARY_EXEC_APIC_REGISTER_VIRT | ++ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | ++ SECONDARY_EXEC_SHADOW_VMCS | ++ SECONDARY_EXEC_XSAVES | ++ SECONDARY_EXEC_RDSEED_EXITING | ++ SECONDARY_EXEC_RDRAND_EXITING | ++ SECONDARY_EXEC_ENABLE_PML | ++ SECONDARY_EXEC_TSC_SCALING | ++ SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE | ++ SECONDARY_EXEC_PT_USE_GPA | ++ SECONDARY_EXEC_PT_CONCEAL_VMX | ++ SECONDARY_EXEC_ENABLE_VMFUNC | ++ SECONDARY_EXEC_ENCLS_EXITING; ++ if (adjust_vmx_controls(min2, opt2, ++ MSR_IA32_VMX_PROCBASED_CTLS2, ++ &_cpu_based_2nd_exec_control) < 0) ++ return -EIO; ++ } ++#ifndef CONFIG_X86_64 ++ if (!(_cpu_based_2nd_exec_control & ++ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) ++ _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; ++#endif ++ ++ if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) ++ _cpu_based_2nd_exec_control &= ~( ++ SECONDARY_EXEC_APIC_REGISTER_VIRT | ++ SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | ++ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); ++ ++ rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, ++ &vmx_cap->ept, &vmx_cap->vpid); ++ ++ if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { ++ /* CR3 accesses and invlpg don't need to cause VM Exits when EPT ++ enabled */ ++ _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | ++ CPU_BASED_CR3_STORE_EXITING | ++ CPU_BASED_INVLPG_EXITING); ++ } else if (vmx_cap->ept) { ++ vmx_cap->ept = 0; ++ pr_warn_once("EPT CAP should not exist if not support " ++ "1-setting enable EPT VM-execution control\n"); ++ } ++ if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && ++ vmx_cap->vpid) { ++ vmx_cap->vpid = 0; ++ pr_warn_once("VPID CAP should not exist if not support " ++ "1-setting enable VPID VM-execution control\n"); ++ } ++ ++ min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT; ++#ifdef CONFIG_X86_64 ++ min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; ++#endif ++ opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | ++ VM_EXIT_LOAD_IA32_PAT | ++ VM_EXIT_LOAD_IA32_EFER | ++ VM_EXIT_CLEAR_BNDCFGS | ++ VM_EXIT_PT_CONCEAL_PIP | ++ VM_EXIT_CLEAR_IA32_RTIT_CTL; ++ if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, ++ &_vmexit_control) < 0) ++ return -EIO; ++ ++ min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; ++ opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR | ++ PIN_BASED_VMX_PREEMPTION_TIMER; ++ if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, ++ &_pin_based_exec_control) < 0) ++ return -EIO; ++ ++ if (cpu_has_broken_vmx_preemption_timer()) ++ _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; ++ if (!(_cpu_based_2nd_exec_control & ++ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) ++ _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; ++ ++ min = VM_ENTRY_LOAD_DEBUG_CONTROLS; ++ opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | ++ VM_ENTRY_LOAD_IA32_PAT | ++ VM_ENTRY_LOAD_IA32_EFER | ++ VM_ENTRY_LOAD_BNDCFGS | ++ VM_ENTRY_PT_CONCEAL_PIP | ++ VM_ENTRY_LOAD_IA32_RTIT_CTL; ++ if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, ++ &_vmentry_control) < 0) ++ return -EIO; ++ ++ /* ++ * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they ++ * can't be used due to an errata where VM Exit may incorrectly clear ++ * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the ++ * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. ++ */ ++ if (boot_cpu_data.x86 == 0x6) { ++ switch (boot_cpu_data.x86_model) { ++ case 26: /* AAK155 */ ++ case 30: /* AAP115 */ ++ case 37: /* AAT100 */ ++ case 44: /* BC86,AAY89,BD102 */ ++ case 46: /* BA97 */ ++ _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; ++ _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; ++ pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " ++ "does not work properly. Using workaround\n"); ++ break; ++ default: ++ break; ++ } ++ } ++ ++ ++ rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); ++ ++ /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ ++ if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) ++ return -EIO; ++ ++#ifdef CONFIG_X86_64 ++ /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ ++ if (vmx_msr_high & (1u<<16)) ++ return -EIO; ++#endif ++ ++ /* Require Write-Back (WB) memory type for VMCS accesses. */ ++ if (((vmx_msr_high >> 18) & 15) != 6) ++ return -EIO; ++ ++ vmcs_conf->size = vmx_msr_high & 0x1fff; ++ vmcs_conf->order = get_order(vmcs_conf->size); ++ vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; ++ ++ vmcs_conf->revision_id = vmx_msr_low; ++ ++ vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; ++ vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; ++ vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; ++ vmcs_conf->vmexit_ctrl = _vmexit_control; ++ vmcs_conf->vmentry_ctrl = _vmentry_control; ++ ++ if (static_branch_unlikely(&enable_evmcs)) ++ evmcs_sanitize_exec_ctrls(vmcs_conf); ++ ++ return 0; ++} ++ ++struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) ++{ ++ int node = cpu_to_node(cpu); ++ struct page *pages; ++ struct vmcs *vmcs; ++ ++ pages = __alloc_pages_node(node, flags, vmcs_config.order); ++ if (!pages) ++ return NULL; ++ vmcs = page_address(pages); ++ memset(vmcs, 0, vmcs_config.size); ++ ++ /* KVM supports Enlightened VMCS v1 only */ ++ if (static_branch_unlikely(&enable_evmcs)) ++ vmcs->hdr.revision_id = KVM_EVMCS_VERSION; ++ else ++ vmcs->hdr.revision_id = vmcs_config.revision_id; ++ ++ if (shadow) ++ vmcs->hdr.shadow_vmcs = 1; ++ return vmcs; ++} ++ ++void free_vmcs(struct vmcs *vmcs) ++{ ++ free_pages((unsigned long)vmcs, vmcs_config.order); ++} ++ ++/* ++ * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded ++ */ ++void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) ++{ ++ if (!loaded_vmcs->vmcs) ++ return; ++ loaded_vmcs_clear(loaded_vmcs); ++ free_vmcs(loaded_vmcs->vmcs); ++ loaded_vmcs->vmcs = NULL; ++ if (loaded_vmcs->msr_bitmap) ++ free_page((unsigned long)loaded_vmcs->msr_bitmap); ++ WARN_ON(loaded_vmcs->shadow_vmcs != NULL); ++} ++ ++int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) ++{ ++ loaded_vmcs->vmcs = alloc_vmcs(false); ++ if (!loaded_vmcs->vmcs) ++ return -ENOMEM; ++ ++ loaded_vmcs->shadow_vmcs = NULL; ++ loaded_vmcs->hv_timer_soft_disabled = false; ++ loaded_vmcs_init(loaded_vmcs); ++ ++ if (cpu_has_vmx_msr_bitmap()) { ++ loaded_vmcs->msr_bitmap = (unsigned long *) ++ __get_free_page(GFP_KERNEL_ACCOUNT); ++ if (!loaded_vmcs->msr_bitmap) ++ goto out_vmcs; ++ memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); ++ ++ if (IS_ENABLED(CONFIG_HYPERV) && ++ static_branch_unlikely(&enable_evmcs) && ++ (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { ++ struct hv_enlightened_vmcs *evmcs = ++ (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs; ++ ++ evmcs->hv_enlightenments_control.msr_bitmap = 1; ++ } ++ } ++ ++ memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); ++ memset(&loaded_vmcs->controls_shadow, 0, ++ sizeof(struct vmcs_controls_shadow)); ++ ++ return 0; ++ ++out_vmcs: ++ free_loaded_vmcs(loaded_vmcs); ++ return -ENOMEM; ++} ++ ++static void free_kvm_area(void) ++{ ++ int cpu; ++ ++ for_each_possible_cpu(cpu) { ++ free_vmcs(per_cpu(vmxarea, cpu)); ++ per_cpu(vmxarea, cpu) = NULL; ++ } ++} ++ ++static __init int alloc_kvm_area(void) ++{ ++ int cpu; ++ ++ for_each_possible_cpu(cpu) { ++ struct vmcs *vmcs; ++ ++ vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); ++ if (!vmcs) { ++ free_kvm_area(); ++ return -ENOMEM; ++ } ++ ++ /* ++ * When eVMCS is enabled, alloc_vmcs_cpu() sets ++ * vmcs->revision_id to KVM_EVMCS_VERSION instead of ++ * revision_id reported by MSR_IA32_VMX_BASIC. ++ * ++ * However, even though not explicitly documented by ++ * TLFS, VMXArea passed as VMXON argument should ++ * still be marked with revision_id reported by ++ * physical CPU. ++ */ ++ if (static_branch_unlikely(&enable_evmcs)) ++ vmcs->hdr.revision_id = vmcs_config.revision_id; ++ ++ per_cpu(vmxarea, cpu) = vmcs; ++ } ++ return 0; ++} ++ ++static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, ++ struct kvm_segment *save) ++{ ++ if (!emulate_invalid_guest_state) { ++ /* ++ * CS and SS RPL should be equal during guest entry according ++ * to VMX spec, but in reality it is not always so. Since vcpu ++ * is in the middle of the transition from real mode to ++ * protected mode it is safe to assume that RPL 0 is a good ++ * default value. ++ */ ++ if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) ++ save->selector &= ~SEGMENT_RPL_MASK; ++ save->dpl = save->selector & SEGMENT_RPL_MASK; ++ save->s = 1; ++ } ++ vmx_set_segment(vcpu, save, seg); ++} ++ ++static void enter_pmode(struct kvm_vcpu *vcpu) ++{ ++ unsigned long flags; ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ ++ /* ++ * Update real mode segment cache. It may be not up-to-date if sement ++ * register was written while vcpu was in a guest mode. ++ */ ++ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); ++ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); ++ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); ++ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); ++ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); ++ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); ++ ++ vmx->rmode.vm86_active = 0; ++ ++ vmx_segment_cache_clear(vmx); ++ ++ vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); ++ ++ flags = vmcs_readl(GUEST_RFLAGS); ++ flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; ++ flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; ++ vmcs_writel(GUEST_RFLAGS, flags); ++ ++ vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | ++ (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); ++ ++ update_exception_bitmap(vcpu); ++ ++ fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); ++ fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); ++ fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); ++ fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); ++ fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); ++ fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); ++} ++ ++static void fix_rmode_seg(int seg, struct kvm_segment *save) ++{ ++ const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; ++ struct kvm_segment var = *save; ++ ++ var.dpl = 0x3; ++ if (seg == VCPU_SREG_CS) ++ var.type = 0x3; ++ ++ if (!emulate_invalid_guest_state) { ++ var.selector = var.base >> 4; ++ var.base = var.base & 0xffff0; ++ var.limit = 0xffff; ++ var.g = 0; ++ var.db = 0; ++ var.present = 1; ++ var.s = 1; ++ var.l = 0; ++ var.unusable = 0; ++ var.type = 0x3; ++ var.avl = 0; ++ if (save->base & 0xf) ++ printk_once(KERN_WARNING "kvm: segment base is not " ++ "paragraph aligned when entering " ++ "protected mode (seg=%d)", seg); ++ } ++ ++ vmcs_write16(sf->selector, var.selector); ++ vmcs_writel(sf->base, var.base); ++ vmcs_write32(sf->limit, var.limit); ++ vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); ++} ++ ++static void enter_rmode(struct kvm_vcpu *vcpu) ++{ ++ unsigned long flags; ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); ++ ++ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); ++ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); ++ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); ++ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); ++ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); ++ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); ++ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); ++ ++ vmx->rmode.vm86_active = 1; ++ ++ /* ++ * Very old userspace does not call KVM_SET_TSS_ADDR before entering ++ * vcpu. Warn the user that an update is overdue. ++ */ ++ if (!kvm_vmx->tss_addr) ++ printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " ++ "called before entering vcpu\n"); ++ ++ vmx_segment_cache_clear(vmx); ++ ++ vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); ++ vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); ++ vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); ++ ++ flags = vmcs_readl(GUEST_RFLAGS); ++ vmx->rmode.save_rflags = flags; ++ ++ flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; ++ ++ vmcs_writel(GUEST_RFLAGS, flags); ++ vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); ++ update_exception_bitmap(vcpu); ++ ++ fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); ++ fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); ++ fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); ++ fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); ++ fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); ++ fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); ++ ++ kvm_mmu_reset_context(vcpu); ++} ++ ++void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER); ++ ++ if (!msr) ++ return; ++ ++ vcpu->arch.efer = efer; ++ if (efer & EFER_LMA) { ++ vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); ++ msr->data = efer; ++ } else { ++ vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); ++ ++ msr->data = efer & ~EFER_LME; ++ } ++ setup_msrs(vmx); ++} ++ ++#ifdef CONFIG_X86_64 ++ ++static void enter_lmode(struct kvm_vcpu *vcpu) ++{ ++ u32 guest_tr_ar; ++ ++ vmx_segment_cache_clear(to_vmx(vcpu)); ++ ++ guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); ++ if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { ++ pr_debug_ratelimited("%s: tss fixup for long mode. \n", ++ __func__); ++ vmcs_write32(GUEST_TR_AR_BYTES, ++ (guest_tr_ar & ~VMX_AR_TYPE_MASK) ++ | VMX_AR_TYPE_BUSY_64_TSS); ++ } ++ vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); ++} ++ ++static void exit_lmode(struct kvm_vcpu *vcpu) ++{ ++ vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); ++ vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); ++} ++ ++#endif ++ ++static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) ++{ ++ int vpid = to_vmx(vcpu)->vpid; ++ ++ if (!vpid_sync_vcpu_addr(vpid, addr)) ++ vpid_sync_context(vpid); ++ ++ /* ++ * If VPIDs are not supported or enabled, then the above is a no-op. ++ * But we don't really need a TLB flush in that case anyway, because ++ * each VM entry/exit includes an implicit flush when VPID is 0. ++ */ ++} ++ ++static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu) ++{ ++ ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; ++ ++ vcpu->arch.cr0 &= ~cr0_guest_owned_bits; ++ vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits; ++} ++ ++static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) ++{ ++ ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; ++ ++ vcpu->arch.cr4 &= ~cr4_guest_owned_bits; ++ vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits; ++} ++ ++static void ept_load_pdptrs(struct kvm_vcpu *vcpu) ++{ ++ struct kvm_mmu *mmu = vcpu->arch.walk_mmu; ++ ++ if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) ++ return; ++ ++ if (is_pae_paging(vcpu)) { ++ vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); ++ vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); ++ vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); ++ vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); ++ } ++} ++ ++void ept_save_pdptrs(struct kvm_vcpu *vcpu) ++{ ++ struct kvm_mmu *mmu = vcpu->arch.walk_mmu; ++ ++ if (is_pae_paging(vcpu)) { ++ mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); ++ mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); ++ mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); ++ mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); ++ } ++ ++ kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); ++} ++ ++static void ept_update_paging_mode_cr0(unsigned long *hw_cr0, ++ unsigned long cr0, ++ struct kvm_vcpu *vcpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ ++ if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) ++ vmx_cache_reg(vcpu, VCPU_EXREG_CR3); ++ if (!(cr0 & X86_CR0_PG)) { ++ /* From paging/starting to nonpaging */ ++ exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING | ++ CPU_BASED_CR3_STORE_EXITING); ++ vcpu->arch.cr0 = cr0; ++ vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); ++ } else if (!is_paging(vcpu)) { ++ /* From nonpaging to paging */ ++ exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING | ++ CPU_BASED_CR3_STORE_EXITING); ++ vcpu->arch.cr0 = cr0; ++ vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); ++ } ++ ++ if (!(cr0 & X86_CR0_WP)) ++ *hw_cr0 &= ~X86_CR0_WP; ++} ++ ++void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ unsigned long hw_cr0; ++ ++ hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); ++ if (enable_unrestricted_guest) ++ hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; ++ else { ++ hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; ++ ++ if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) ++ enter_pmode(vcpu); ++ ++ if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) ++ enter_rmode(vcpu); ++ } ++ ++#ifdef CONFIG_X86_64 ++ if (vcpu->arch.efer & EFER_LME) { ++ if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) ++ enter_lmode(vcpu); ++ if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) ++ exit_lmode(vcpu); ++ } ++#endif ++ ++ if (enable_ept && !enable_unrestricted_guest) ++ ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu); ++ ++ vmcs_writel(CR0_READ_SHADOW, cr0); ++ vmcs_writel(GUEST_CR0, hw_cr0); ++ vcpu->arch.cr0 = cr0; ++ ++ /* depends on vcpu->arch.cr0 to be set to a new value */ ++ vmx->emulation_required = emulation_required(vcpu); ++} ++ ++static int get_ept_level(struct kvm_vcpu *vcpu) ++{ ++ if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48)) ++ return 5; ++ return 4; ++} ++ ++u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa) ++{ ++ u64 eptp = VMX_EPTP_MT_WB; ++ ++ eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; ++ ++ if (enable_ept_ad_bits && ++ (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) ++ eptp |= VMX_EPTP_AD_ENABLE_BIT; ++ eptp |= (root_hpa & PAGE_MASK); ++ ++ return eptp; ++} ++ ++void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) ++{ ++ struct kvm *kvm = vcpu->kvm; ++ bool update_guest_cr3 = true; ++ unsigned long guest_cr3; ++ u64 eptp; ++ ++ guest_cr3 = cr3; ++ if (enable_ept) { ++ eptp = construct_eptp(vcpu, cr3); ++ vmcs_write64(EPT_POINTER, eptp); ++ ++ if (kvm_x86_ops->tlb_remote_flush) { ++ spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock); ++ to_vmx(vcpu)->ept_pointer = eptp; ++ to_kvm_vmx(kvm)->ept_pointers_match ++ = EPT_POINTERS_CHECK; ++ spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock); ++ } ++ ++ /* Loading vmcs02.GUEST_CR3 is handled by nested VM-Enter. */ ++ if (is_guest_mode(vcpu)) ++ update_guest_cr3 = false; ++ else if (!enable_unrestricted_guest && !is_paging(vcpu)) ++ guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; ++ else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) ++ guest_cr3 = vcpu->arch.cr3; ++ else /* vmcs01.GUEST_CR3 is already up-to-date. */ ++ update_guest_cr3 = false; ++ ept_load_pdptrs(vcpu); ++ } ++ ++ if (update_guest_cr3) ++ vmcs_writel(GUEST_CR3, guest_cr3); ++} ++ ++int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ /* ++ * Pass through host's Machine Check Enable value to hw_cr4, which ++ * is in force while we are in guest mode. Do not let guests control ++ * this bit, even if host CR4.MCE == 0. ++ */ ++ unsigned long hw_cr4; ++ ++ hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); ++ if (enable_unrestricted_guest) ++ hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; ++ else if (vmx->rmode.vm86_active) ++ hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; ++ else ++ hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; ++ ++ if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) { ++ if (cr4 & X86_CR4_UMIP) { ++ secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); ++ hw_cr4 &= ~X86_CR4_UMIP; ++ } else if (!is_guest_mode(vcpu) || ++ !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { ++ secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); ++ } ++ } ++ ++ if (cr4 & X86_CR4_VMXE) { ++ /* ++ * To use VMXON (and later other VMX instructions), a guest ++ * must first be able to turn on cr4.VMXE (see handle_vmon()). ++ * So basically the check on whether to allow nested VMX ++ * is here. We operate under the default treatment of SMM, ++ * so VMX cannot be enabled under SMM. ++ */ ++ if (!nested_vmx_allowed(vcpu) || is_smm(vcpu)) ++ return 1; ++ } ++ ++ if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) ++ return 1; ++ ++ vcpu->arch.cr4 = cr4; ++ ++ if (!enable_unrestricted_guest) { ++ if (enable_ept) { ++ if (!is_paging(vcpu)) { ++ hw_cr4 &= ~X86_CR4_PAE; ++ hw_cr4 |= X86_CR4_PSE; ++ } else if (!(cr4 & X86_CR4_PAE)) { ++ hw_cr4 &= ~X86_CR4_PAE; ++ } ++ } ++ ++ /* ++ * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in ++ * hardware. To emulate this behavior, SMEP/SMAP/PKU needs ++ * to be manually disabled when guest switches to non-paging ++ * mode. ++ * ++ * If !enable_unrestricted_guest, the CPU is always running ++ * with CR0.PG=1 and CR4 needs to be modified. ++ * If enable_unrestricted_guest, the CPU automatically ++ * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. ++ */ ++ if (!is_paging(vcpu)) ++ hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); ++ } ++ ++ vmcs_writel(CR4_READ_SHADOW, cr4); ++ vmcs_writel(GUEST_CR4, hw_cr4); ++ return 0; ++} ++ ++void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ u32 ar; ++ ++ if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { ++ *var = vmx->rmode.segs[seg]; ++ if (seg == VCPU_SREG_TR ++ || var->selector == vmx_read_guest_seg_selector(vmx, seg)) ++ return; ++ var->base = vmx_read_guest_seg_base(vmx, seg); ++ var->selector = vmx_read_guest_seg_selector(vmx, seg); ++ return; ++ } ++ var->base = vmx_read_guest_seg_base(vmx, seg); ++ var->limit = vmx_read_guest_seg_limit(vmx, seg); ++ var->selector = vmx_read_guest_seg_selector(vmx, seg); ++ ar = vmx_read_guest_seg_ar(vmx, seg); ++ var->unusable = (ar >> 16) & 1; ++ var->type = ar & 15; ++ var->s = (ar >> 4) & 1; ++ var->dpl = (ar >> 5) & 3; ++ /* ++ * Some userspaces do not preserve unusable property. Since usable ++ * segment has to be present according to VMX spec we can use present ++ * property to amend userspace bug by making unusable segment always ++ * nonpresent. vmx_segment_access_rights() already marks nonpresent ++ * segment as unusable. ++ */ ++ var->present = !var->unusable; ++ var->avl = (ar >> 12) & 1; ++ var->l = (ar >> 13) & 1; ++ var->db = (ar >> 14) & 1; ++ var->g = (ar >> 15) & 1; ++} ++ ++static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) ++{ ++ struct kvm_segment s; ++ ++ if (to_vmx(vcpu)->rmode.vm86_active) { ++ vmx_get_segment(vcpu, &s, seg); ++ return s.base; ++ } ++ return vmx_read_guest_seg_base(to_vmx(vcpu), seg); ++} ++ ++int vmx_get_cpl(struct kvm_vcpu *vcpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ ++ if (unlikely(vmx->rmode.vm86_active)) ++ return 0; ++ else { ++ int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); ++ return VMX_AR_DPL(ar); ++ } ++} ++ ++static u32 vmx_segment_access_rights(struct kvm_segment *var) ++{ ++ u32 ar; ++ ++ if (var->unusable || !var->present) ++ ar = 1 << 16; ++ else { ++ ar = var->type & 15; ++ ar |= (var->s & 1) << 4; ++ ar |= (var->dpl & 3) << 5; ++ ar |= (var->present & 1) << 7; ++ ar |= (var->avl & 1) << 12; ++ ar |= (var->l & 1) << 13; ++ ar |= (var->db & 1) << 14; ++ ar |= (var->g & 1) << 15; ++ } ++ ++ return ar; ++} ++ ++void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; ++ ++ vmx_segment_cache_clear(vmx); ++ ++ if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { ++ vmx->rmode.segs[seg] = *var; ++ if (seg == VCPU_SREG_TR) ++ vmcs_write16(sf->selector, var->selector); ++ else if (var->s) ++ fix_rmode_seg(seg, &vmx->rmode.segs[seg]); ++ goto out; ++ } ++ ++ vmcs_writel(sf->base, var->base); ++ vmcs_write32(sf->limit, var->limit); ++ vmcs_write16(sf->selector, var->selector); ++ ++ /* ++ * Fix the "Accessed" bit in AR field of segment registers for older ++ * qemu binaries. ++ * IA32 arch specifies that at the time of processor reset the ++ * "Accessed" bit in the AR field of segment registers is 1. And qemu ++ * is setting it to 0 in the userland code. This causes invalid guest ++ * state vmexit when "unrestricted guest" mode is turned on. ++ * Fix for this setup issue in cpu_reset is being pushed in the qemu ++ * tree. Newer qemu binaries with that qemu fix would not need this ++ * kvm hack. ++ */ ++ if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR)) ++ var->type |= 0x1; /* Accessed */ ++ ++ vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); ++ ++out: ++ vmx->emulation_required = emulation_required(vcpu); ++} ++ ++static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) ++{ ++ u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); ++ ++ *db = (ar >> 14) & 1; ++ *l = (ar >> 13) & 1; ++} ++ ++static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) ++{ ++ dt->size = vmcs_read32(GUEST_IDTR_LIMIT); ++ dt->address = vmcs_readl(GUEST_IDTR_BASE); ++} ++ ++static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) ++{ ++ vmcs_write32(GUEST_IDTR_LIMIT, dt->size); ++ vmcs_writel(GUEST_IDTR_BASE, dt->address); ++} ++ ++static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) ++{ ++ dt->size = vmcs_read32(GUEST_GDTR_LIMIT); ++ dt->address = vmcs_readl(GUEST_GDTR_BASE); ++} ++ ++static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) ++{ ++ vmcs_write32(GUEST_GDTR_LIMIT, dt->size); ++ vmcs_writel(GUEST_GDTR_BASE, dt->address); ++} ++ ++static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) ++{ ++ struct kvm_segment var; ++ u32 ar; ++ ++ vmx_get_segment(vcpu, &var, seg); ++ var.dpl = 0x3; ++ if (seg == VCPU_SREG_CS) ++ var.type = 0x3; ++ ar = vmx_segment_access_rights(&var); ++ ++ if (var.base != (var.selector << 4)) ++ return false; ++ if (var.limit != 0xffff) ++ return false; ++ if (ar != 0xf3) ++ return false; ++ ++ return true; ++} ++ ++static bool code_segment_valid(struct kvm_vcpu *vcpu) ++{ ++ struct kvm_segment cs; ++ unsigned int cs_rpl; ++ ++ vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); ++ cs_rpl = cs.selector & SEGMENT_RPL_MASK; ++ ++ if (cs.unusable) ++ return false; ++ if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) ++ return false; ++ if (!cs.s) ++ return false; ++ if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { ++ if (cs.dpl > cs_rpl) ++ return false; ++ } else { ++ if (cs.dpl != cs_rpl) ++ return false; ++ } ++ if (!cs.present) ++ return false; ++ ++ /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ ++ return true; ++} ++ ++static bool stack_segment_valid(struct kvm_vcpu *vcpu) ++{ ++ struct kvm_segment ss; ++ unsigned int ss_rpl; ++ ++ vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); ++ ss_rpl = ss.selector & SEGMENT_RPL_MASK; ++ ++ if (ss.unusable) ++ return true; ++ if (ss.type != 3 && ss.type != 7) ++ return false; ++ if (!ss.s) ++ return false; ++ if (ss.dpl != ss_rpl) /* DPL != RPL */ ++ return false; ++ if (!ss.present) ++ return false; ++ ++ return true; ++} ++ ++static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) ++{ ++ struct kvm_segment var; ++ unsigned int rpl; ++ ++ vmx_get_segment(vcpu, &var, seg); ++ rpl = var.selector & SEGMENT_RPL_MASK; ++ ++ if (var.unusable) ++ return true; ++ if (!var.s) ++ return false; ++ if (!var.present) ++ return false; ++ if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { ++ if (var.dpl < rpl) /* DPL < RPL */ ++ return false; ++ } ++ ++ /* TODO: Add other members to kvm_segment_field to allow checking for other access ++ * rights flags ++ */ ++ return true; ++} ++ ++static bool tr_valid(struct kvm_vcpu *vcpu) ++{ ++ struct kvm_segment tr; ++ ++ vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); ++ ++ if (tr.unusable) ++ return false; ++ if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ ++ return false; ++ if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ ++ return false; ++ if (!tr.present) ++ return false; ++ ++ return true; ++} ++ ++static bool ldtr_valid(struct kvm_vcpu *vcpu) ++{ ++ struct kvm_segment ldtr; ++ ++ vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); ++ ++ if (ldtr.unusable) ++ return true; ++ if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ ++ return false; ++ if (ldtr.type != 2) ++ return false; ++ if (!ldtr.present) ++ return false; ++ ++ return true; ++} ++ ++static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) ++{ ++ struct kvm_segment cs, ss; ++ ++ vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); ++ vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); ++ ++ return ((cs.selector & SEGMENT_RPL_MASK) == ++ (ss.selector & SEGMENT_RPL_MASK)); ++} ++ ++/* ++ * Check if guest state is valid. Returns true if valid, false if ++ * not. ++ * We assume that registers are always usable ++ */ ++static bool guest_state_valid(struct kvm_vcpu *vcpu) ++{ ++ if (enable_unrestricted_guest) ++ return true; ++ ++ /* real mode guest state checks */ ++ if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { ++ if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) ++ return false; ++ if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) ++ return false; ++ if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) ++ return false; ++ if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) ++ return false; ++ if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) ++ return false; ++ if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) ++ return false; ++ } else { ++ /* protected mode guest state checks */ ++ if (!cs_ss_rpl_check(vcpu)) ++ return false; ++ if (!code_segment_valid(vcpu)) ++ return false; ++ if (!stack_segment_valid(vcpu)) ++ return false; ++ if (!data_segment_valid(vcpu, VCPU_SREG_DS)) ++ return false; ++ if (!data_segment_valid(vcpu, VCPU_SREG_ES)) ++ return false; ++ if (!data_segment_valid(vcpu, VCPU_SREG_FS)) ++ return false; ++ if (!data_segment_valid(vcpu, VCPU_SREG_GS)) ++ return false; ++ if (!tr_valid(vcpu)) ++ return false; ++ if (!ldtr_valid(vcpu)) ++ return false; ++ } ++ /* TODO: ++ * - Add checks on RIP ++ * - Add checks on RFLAGS ++ */ ++ ++ return true; ++} ++ ++static int init_rmode_tss(struct kvm *kvm) ++{ ++ gfn_t fn; ++ u16 data = 0; ++ int idx, r; ++ ++ idx = srcu_read_lock(&kvm->srcu); ++ fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT; ++ r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); ++ if (r < 0) ++ goto out; ++ data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; ++ r = kvm_write_guest_page(kvm, fn++, &data, ++ TSS_IOPB_BASE_OFFSET, sizeof(u16)); ++ if (r < 0) ++ goto out; ++ r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE); ++ if (r < 0) ++ goto out; ++ r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); ++ if (r < 0) ++ goto out; ++ data = ~0; ++ r = kvm_write_guest_page(kvm, fn, &data, ++ RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1, ++ sizeof(u8)); ++out: ++ srcu_read_unlock(&kvm->srcu, idx); ++ return r; ++} ++ ++static int init_rmode_identity_map(struct kvm *kvm) ++{ ++ struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); ++ int i, idx, r = 0; ++ kvm_pfn_t identity_map_pfn; ++ u32 tmp; ++ ++ /* Protect kvm_vmx->ept_identity_pagetable_done. */ ++ mutex_lock(&kvm->slots_lock); ++ ++ if (likely(kvm_vmx->ept_identity_pagetable_done)) ++ goto out2; ++ ++ if (!kvm_vmx->ept_identity_map_addr) ++ kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; ++ identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT; ++ ++ r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, ++ kvm_vmx->ept_identity_map_addr, PAGE_SIZE); ++ if (r < 0) ++ goto out2; ++ ++ idx = srcu_read_lock(&kvm->srcu); ++ r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE); ++ if (r < 0) ++ goto out; ++ /* Set up identity-mapping pagetable for EPT in real mode */ ++ for (i = 0; i < PT32_ENT_PER_PAGE; i++) { ++ tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | ++ _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); ++ r = kvm_write_guest_page(kvm, identity_map_pfn, ++ &tmp, i * sizeof(tmp), sizeof(tmp)); ++ if (r < 0) ++ goto out; ++ } ++ kvm_vmx->ept_identity_pagetable_done = true; ++ ++out: ++ srcu_read_unlock(&kvm->srcu, idx); ++ ++out2: ++ mutex_unlock(&kvm->slots_lock); ++ return r; ++} ++ ++static void seg_setup(int seg) ++{ ++ const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; ++ unsigned int ar; ++ ++ vmcs_write16(sf->selector, 0); ++ vmcs_writel(sf->base, 0); ++ vmcs_write32(sf->limit, 0xffff); ++ ar = 0x93; ++ if (seg == VCPU_SREG_CS) ++ ar |= 0x08; /* code segment */ ++ ++ vmcs_write32(sf->ar_bytes, ar); ++} ++ ++static int alloc_apic_access_page(struct kvm *kvm) ++{ ++ struct page *page; ++ int r = 0; ++ ++ mutex_lock(&kvm->slots_lock); ++ if (kvm->arch.apic_access_page_done) ++ goto out; ++ r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, ++ APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); ++ if (r) ++ goto out; ++ ++ page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); ++ if (is_error_page(page)) { ++ r = -EFAULT; ++ goto out; ++ } ++ ++ /* ++ * Do not pin the page in memory, so that memory hot-unplug ++ * is able to migrate it. ++ */ ++ put_page(page); ++ kvm->arch.apic_access_page_done = true; ++out: ++ mutex_unlock(&kvm->slots_lock); ++ return r; ++} ++ ++int allocate_vpid(void) ++{ ++ int vpid; ++ ++ if (!enable_vpid) ++ return 0; ++ spin_lock(&vmx_vpid_lock); ++ vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); ++ if (vpid < VMX_NR_VPIDS) ++ __set_bit(vpid, vmx_vpid_bitmap); ++ else ++ vpid = 0; ++ spin_unlock(&vmx_vpid_lock); ++ return vpid; ++} ++ ++void free_vpid(int vpid) ++{ ++ if (!enable_vpid || vpid == 0) ++ return; ++ spin_lock(&vmx_vpid_lock); ++ __clear_bit(vpid, vmx_vpid_bitmap); ++ spin_unlock(&vmx_vpid_lock); ++} ++ ++static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, ++ u32 msr, int type) ++{ ++ int f = sizeof(unsigned long); ++ ++ if (!cpu_has_vmx_msr_bitmap()) ++ return; ++ ++ if (static_branch_unlikely(&enable_evmcs)) ++ evmcs_touch_msr_bitmap(); ++ ++ /* ++ * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals ++ * have the write-low and read-high bitmap offsets the wrong way round. ++ * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. ++ */ ++ if (msr <= 0x1fff) { ++ if (type & MSR_TYPE_R) ++ /* read-low */ ++ __clear_bit(msr, msr_bitmap + 0x000 / f); ++ ++ if (type & MSR_TYPE_W) ++ /* write-low */ ++ __clear_bit(msr, msr_bitmap + 0x800 / f); ++ ++ } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { ++ msr &= 0x1fff; ++ if (type & MSR_TYPE_R) ++ /* read-high */ ++ __clear_bit(msr, msr_bitmap + 0x400 / f); ++ ++ if (type & MSR_TYPE_W) ++ /* write-high */ ++ __clear_bit(msr, msr_bitmap + 0xc00 / f); ++ ++ } ++} ++ ++static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap, ++ u32 msr, int type) ++{ ++ int f = sizeof(unsigned long); ++ ++ if (!cpu_has_vmx_msr_bitmap()) ++ return; ++ ++ if (static_branch_unlikely(&enable_evmcs)) ++ evmcs_touch_msr_bitmap(); ++ ++ /* ++ * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals ++ * have the write-low and read-high bitmap offsets the wrong way round. ++ * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. ++ */ ++ if (msr <= 0x1fff) { ++ if (type & MSR_TYPE_R) ++ /* read-low */ ++ __set_bit(msr, msr_bitmap + 0x000 / f); ++ ++ if (type & MSR_TYPE_W) ++ /* write-low */ ++ __set_bit(msr, msr_bitmap + 0x800 / f); ++ ++ } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { ++ msr &= 0x1fff; ++ if (type & MSR_TYPE_R) ++ /* read-high */ ++ __set_bit(msr, msr_bitmap + 0x400 / f); ++ ++ if (type & MSR_TYPE_W) ++ /* write-high */ ++ __set_bit(msr, msr_bitmap + 0xc00 / f); ++ ++ } ++} ++ ++static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap, ++ u32 msr, int type, bool value) ++{ ++ if (value) ++ vmx_enable_intercept_for_msr(msr_bitmap, msr, type); ++ else ++ vmx_disable_intercept_for_msr(msr_bitmap, msr, type); ++} ++ ++static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu) ++{ ++ u8 mode = 0; ++ ++ if (cpu_has_secondary_exec_ctrls() && ++ (secondary_exec_controls_get(to_vmx(vcpu)) & ++ SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { ++ mode |= MSR_BITMAP_MODE_X2APIC; ++ if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) ++ mode |= MSR_BITMAP_MODE_X2APIC_APICV; ++ } ++ ++ return mode; ++} ++ ++static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap, ++ u8 mode) ++{ ++ int msr; ++ ++ for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { ++ unsigned word = msr / BITS_PER_LONG; ++ msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0; ++ msr_bitmap[word + (0x800 / sizeof(long))] = ~0; ++ } ++ ++ if (mode & MSR_BITMAP_MODE_X2APIC) { ++ /* ++ * TPR reads and writes can be virtualized even if virtual interrupt ++ * delivery is not in use. ++ */ ++ vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW); ++ if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { ++ vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R); ++ vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); ++ vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); ++ } ++ } ++} ++ ++void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; ++ u8 mode = vmx_msr_bitmap_mode(vcpu); ++ u8 changed = mode ^ vmx->msr_bitmap_mode; ++ ++ if (!changed) ++ return; ++ ++ if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV)) ++ vmx_update_msr_bitmap_x2apic(msr_bitmap, mode); ++ ++ vmx->msr_bitmap_mode = mode; ++} ++ ++void pt_update_intercept_for_msr(struct vcpu_vmx *vmx) ++{ ++ unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; ++ bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); ++ u32 i; ++ ++ vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS, ++ MSR_TYPE_RW, flag); ++ vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE, ++ MSR_TYPE_RW, flag); ++ vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK, ++ MSR_TYPE_RW, flag); ++ vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH, ++ MSR_TYPE_RW, flag); ++ for (i = 0; i < vmx->pt_desc.addr_range; i++) { ++ vmx_set_intercept_for_msr(msr_bitmap, ++ MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); ++ vmx_set_intercept_for_msr(msr_bitmap, ++ MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); ++ } ++} ++ ++static bool vmx_get_enable_apicv(struct kvm *kvm) ++{ ++ return enable_apicv; ++} ++ ++static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ void *vapic_page; ++ u32 vppr; ++ int rvi; ++ ++ if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || ++ !nested_cpu_has_vid(get_vmcs12(vcpu)) || ++ WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) ++ return false; ++ ++ rvi = vmx_get_rvi(); ++ ++ vapic_page = vmx->nested.virtual_apic_map.hva; ++ vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); ++ ++ return ((rvi & 0xf0) > (vppr & 0xf0)); ++} ++ ++static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, ++ bool nested) ++{ ++#ifdef CONFIG_SMP ++ int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR; ++ ++ if (vcpu->mode == IN_GUEST_MODE) { ++ /* ++ * The vector of interrupt to be delivered to vcpu had ++ * been set in PIR before this function. ++ * ++ * Following cases will be reached in this block, and ++ * we always send a notification event in all cases as ++ * explained below. ++ * ++ * Case 1: vcpu keeps in non-root mode. Sending a ++ * notification event posts the interrupt to vcpu. ++ * ++ * Case 2: vcpu exits to root mode and is still ++ * runnable. PIR will be synced to vIRR before the ++ * next vcpu entry. Sending a notification event in ++ * this case has no effect, as vcpu is not in root ++ * mode. ++ * ++ * Case 3: vcpu exits to root mode and is blocked. ++ * vcpu_block() has already synced PIR to vIRR and ++ * never blocks vcpu if vIRR is not cleared. Therefore, ++ * a blocked vcpu here does not wait for any requested ++ * interrupts in PIR, and sending a notification event ++ * which has no effect is safe here. ++ */ ++ ++ apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); ++ return true; ++ } ++#endif ++ return false; ++} ++ ++static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, ++ int vector) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ ++ if (is_guest_mode(vcpu) && ++ vector == vmx->nested.posted_intr_nv) { ++ /* ++ * If a posted intr is not recognized by hardware, ++ * we will accomplish it in the next vmentry. ++ */ ++ vmx->nested.pi_pending = true; ++ kvm_make_request(KVM_REQ_EVENT, vcpu); ++ /* the PIR and ON have been set by L1. */ ++ if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true)) ++ kvm_vcpu_kick(vcpu); ++ return 0; ++ } ++ return -1; ++} ++/* ++ * Send interrupt to vcpu via posted interrupt way. ++ * 1. If target vcpu is running(non-root mode), send posted interrupt ++ * notification to vcpu and hardware will sync PIR to vIRR atomically. ++ * 2. If target vcpu isn't running(root mode), kick it to pick up the ++ * interrupt from PIR in next vmentry. ++ */ ++static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ int r; ++ ++ r = vmx_deliver_nested_posted_interrupt(vcpu, vector); ++ if (!r) ++ return; ++ ++ if (pi_test_and_set_pir(vector, &vmx->pi_desc)) ++ return; ++ ++ /* If a previous notification has sent the IPI, nothing to do. */ ++ if (pi_test_and_set_on(&vmx->pi_desc)) ++ return; ++ ++ if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false)) ++ kvm_vcpu_kick(vcpu); ++} ++ ++/* ++ * Set up the vmcs's constant host-state fields, i.e., host-state fields that ++ * will not change in the lifetime of the guest. ++ * Note that host-state that does change is set elsewhere. E.g., host-state ++ * that is set differently for each CPU is set in vmx_vcpu_load(), not here. ++ */ ++void vmx_set_constant_host_state(struct vcpu_vmx *vmx) ++{ ++ u32 low32, high32; ++ unsigned long tmpl; ++ unsigned long cr0, cr3, cr4; ++ ++ cr0 = read_cr0(); ++ WARN_ON(cr0 & X86_CR0_TS); ++ vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ ++ ++ /* ++ * Save the most likely value for this task's CR3 in the VMCS. ++ * We can't use __get_current_cr3_fast() because we're not atomic. ++ */ ++ cr3 = __read_cr3(); ++ vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ ++ vmx->loaded_vmcs->host_state.cr3 = cr3; ++ ++ /* Save the most likely value for this task's CR4 in the VMCS. */ ++ cr4 = cr4_read_shadow(); ++ vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ ++ vmx->loaded_vmcs->host_state.cr4 = cr4; ++ ++ vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ ++#ifdef CONFIG_X86_64 ++ /* ++ * Load null selectors, so we can avoid reloading them in ++ * vmx_prepare_switch_to_host(), in case userspace uses ++ * the null selectors too (the expected case). ++ */ ++ vmcs_write16(HOST_DS_SELECTOR, 0); ++ vmcs_write16(HOST_ES_SELECTOR, 0); ++#else ++ vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ ++ vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ ++#endif ++ vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ ++ vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ ++ ++ vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ ++ ++ vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ ++ ++ rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); ++ vmcs_write32(HOST_IA32_SYSENTER_CS, low32); ++ rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); ++ vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ ++ ++ if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { ++ rdmsr(MSR_IA32_CR_PAT, low32, high32); ++ vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); ++ } ++ ++ if (cpu_has_load_ia32_efer()) ++ vmcs_write64(HOST_IA32_EFER, host_efer); ++} ++ ++void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) ++{ ++ vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS; ++ if (enable_ept) ++ vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE; ++ if (is_guest_mode(&vmx->vcpu)) ++ vmx->vcpu.arch.cr4_guest_owned_bits &= ++ ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask; ++ vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits); ++} ++ ++u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) ++{ ++ u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; ++ ++ if (!kvm_vcpu_apicv_active(&vmx->vcpu)) ++ pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; ++ ++ if (!enable_vnmi) ++ pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; ++ ++ if (!enable_preemption_timer) ++ pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; ++ ++ return pin_based_exec_ctrl; ++} ++ ++static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ ++ pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); ++ if (cpu_has_secondary_exec_ctrls()) { ++ if (kvm_vcpu_apicv_active(vcpu)) ++ secondary_exec_controls_setbit(vmx, ++ SECONDARY_EXEC_APIC_REGISTER_VIRT | ++ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); ++ else ++ secondary_exec_controls_clearbit(vmx, ++ SECONDARY_EXEC_APIC_REGISTER_VIRT | ++ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); ++ } ++ ++ if (cpu_has_vmx_msr_bitmap()) ++ vmx_update_msr_bitmap(vcpu); ++} ++ ++u32 vmx_exec_control(struct vcpu_vmx *vmx) ++{ ++ u32 exec_control = vmcs_config.cpu_based_exec_ctrl; ++ ++ if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) ++ exec_control &= ~CPU_BASED_MOV_DR_EXITING; ++ ++ if (!cpu_need_tpr_shadow(&vmx->vcpu)) { ++ exec_control &= ~CPU_BASED_TPR_SHADOW; ++#ifdef CONFIG_X86_64 ++ exec_control |= CPU_BASED_CR8_STORE_EXITING | ++ CPU_BASED_CR8_LOAD_EXITING; ++#endif ++ } ++ if (!enable_ept) ++ exec_control |= CPU_BASED_CR3_STORE_EXITING | ++ CPU_BASED_CR3_LOAD_EXITING | ++ CPU_BASED_INVLPG_EXITING; ++ if (kvm_mwait_in_guest(vmx->vcpu.kvm)) ++ exec_control &= ~(CPU_BASED_MWAIT_EXITING | ++ CPU_BASED_MONITOR_EXITING); ++ if (kvm_hlt_in_guest(vmx->vcpu.kvm)) ++ exec_control &= ~CPU_BASED_HLT_EXITING; ++ return exec_control; ++} ++ ++ ++static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx) ++{ ++ struct kvm_vcpu *vcpu = &vmx->vcpu; ++ ++ u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; ++ ++ if (pt_mode == PT_MODE_SYSTEM) ++ exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); ++ if (!cpu_need_virtualize_apic_accesses(vcpu)) ++ exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; ++ if (vmx->vpid == 0) ++ exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; ++ if (!enable_ept) { ++ exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; ++ enable_unrestricted_guest = 0; ++ } ++ if (!enable_unrestricted_guest) ++ exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; ++ if (kvm_pause_in_guest(vmx->vcpu.kvm)) ++ exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; ++ if (!kvm_vcpu_apicv_active(vcpu)) ++ exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | ++ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); ++ exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; ++ ++ /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, ++ * in vmx_set_cr4. */ ++ exec_control &= ~SECONDARY_EXEC_DESC; ++ ++ /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD ++ (handle_vmptrld). ++ We can NOT enable shadow_vmcs here because we don't have yet ++ a current VMCS12 ++ */ ++ exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; ++ ++ if (!enable_pml) ++ exec_control &= ~SECONDARY_EXEC_ENABLE_PML; ++ ++ if (vmx_xsaves_supported()) { ++ /* Exposing XSAVES only when XSAVE is exposed */ ++ bool xsaves_enabled = ++ guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && ++ guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); ++ ++ vcpu->arch.xsaves_enabled = xsaves_enabled; ++ ++ if (!xsaves_enabled) ++ exec_control &= ~SECONDARY_EXEC_XSAVES; ++ ++ if (nested) { ++ if (xsaves_enabled) ++ vmx->nested.msrs.secondary_ctls_high |= ++ SECONDARY_EXEC_XSAVES; ++ else ++ vmx->nested.msrs.secondary_ctls_high &= ++ ~SECONDARY_EXEC_XSAVES; ++ } ++ } ++ ++ if (vmx_rdtscp_supported()) { ++ bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP); ++ if (!rdtscp_enabled) ++ exec_control &= ~SECONDARY_EXEC_RDTSCP; ++ ++ if (nested) { ++ if (rdtscp_enabled) ++ vmx->nested.msrs.secondary_ctls_high |= ++ SECONDARY_EXEC_RDTSCP; ++ else ++ vmx->nested.msrs.secondary_ctls_high &= ++ ~SECONDARY_EXEC_RDTSCP; ++ } ++ } ++ ++ if (vmx_invpcid_supported()) { ++ /* Exposing INVPCID only when PCID is exposed */ ++ bool invpcid_enabled = ++ guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) && ++ guest_cpuid_has(vcpu, X86_FEATURE_PCID); ++ ++ if (!invpcid_enabled) { ++ exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID; ++ guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID); ++ } ++ ++ if (nested) { ++ if (invpcid_enabled) ++ vmx->nested.msrs.secondary_ctls_high |= ++ SECONDARY_EXEC_ENABLE_INVPCID; ++ else ++ vmx->nested.msrs.secondary_ctls_high &= ++ ~SECONDARY_EXEC_ENABLE_INVPCID; ++ } ++ } ++ ++ if (vmx_rdrand_supported()) { ++ bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND); ++ if (rdrand_enabled) ++ exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING; ++ ++ if (nested) { ++ if (rdrand_enabled) ++ vmx->nested.msrs.secondary_ctls_high |= ++ SECONDARY_EXEC_RDRAND_EXITING; ++ else ++ vmx->nested.msrs.secondary_ctls_high &= ++ ~SECONDARY_EXEC_RDRAND_EXITING; ++ } ++ } ++ ++ if (vmx_rdseed_supported()) { ++ bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED); ++ if (rdseed_enabled) ++ exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING; ++ ++ if (nested) { ++ if (rdseed_enabled) ++ vmx->nested.msrs.secondary_ctls_high |= ++ SECONDARY_EXEC_RDSEED_EXITING; ++ else ++ vmx->nested.msrs.secondary_ctls_high &= ++ ~SECONDARY_EXEC_RDSEED_EXITING; ++ } ++ } ++ ++ if (vmx_waitpkg_supported()) { ++ bool waitpkg_enabled = ++ guest_cpuid_has(vcpu, X86_FEATURE_WAITPKG); ++ ++ if (!waitpkg_enabled) ++ exec_control &= ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE; ++ ++ if (nested) { ++ if (waitpkg_enabled) ++ vmx->nested.msrs.secondary_ctls_high |= ++ SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE; ++ else ++ vmx->nested.msrs.secondary_ctls_high &= ++ ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE; ++ } ++ } ++ ++ vmx->secondary_exec_control = exec_control; ++} ++ ++static void ept_set_mmio_spte_mask(void) ++{ ++ /* ++ * EPT Misconfigurations can be generated if the value of bits 2:0 ++ * of an EPT paging-structure entry is 110b (write/execute). ++ */ ++ kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK, ++ VMX_EPT_MISCONFIG_WX_VALUE, 0); ++} ++ ++#define VMX_XSS_EXIT_BITMAP 0 ++ ++/* ++ * Noting that the initialization of Guest-state Area of VMCS is in ++ * vmx_vcpu_reset(). ++ */ ++static void init_vmcs(struct vcpu_vmx *vmx) ++{ ++ if (nested) ++ nested_vmx_set_vmcs_shadowing_bitmap(); ++ ++ if (cpu_has_vmx_msr_bitmap()) ++ vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); ++ ++ vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ ++ ++ /* Control */ ++ pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); ++ ++ exec_controls_set(vmx, vmx_exec_control(vmx)); ++ ++ if (cpu_has_secondary_exec_ctrls()) { ++ vmx_compute_secondary_exec_control(vmx); ++ secondary_exec_controls_set(vmx, vmx->secondary_exec_control); ++ } ++ ++ if (kvm_vcpu_apicv_active(&vmx->vcpu)) { ++ vmcs_write64(EOI_EXIT_BITMAP0, 0); ++ vmcs_write64(EOI_EXIT_BITMAP1, 0); ++ vmcs_write64(EOI_EXIT_BITMAP2, 0); ++ vmcs_write64(EOI_EXIT_BITMAP3, 0); ++ ++ vmcs_write16(GUEST_INTR_STATUS, 0); ++ ++ vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); ++ vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); ++ } ++ ++ if (!kvm_pause_in_guest(vmx->vcpu.kvm)) { ++ vmcs_write32(PLE_GAP, ple_gap); ++ vmx->ple_window = ple_window; ++ vmx->ple_window_dirty = true; ++ } ++ ++ vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); ++ vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); ++ vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ ++ ++ vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ ++ vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ ++ vmx_set_constant_host_state(vmx); ++ vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ ++ vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ ++ ++ if (cpu_has_vmx_vmfunc()) ++ vmcs_write64(VM_FUNCTION_CONTROL, 0); ++ ++ vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); ++ vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); ++ vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); ++ vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); ++ vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); ++ ++ if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) ++ vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); ++ ++ vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); ++ ++ /* 22.2.1, 20.8.1 */ ++ vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); ++ ++ vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS; ++ vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS); ++ ++ set_cr4_guest_host_mask(vmx); ++ ++ if (vmx->vpid != 0) ++ vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); ++ ++ if (vmx_xsaves_supported()) ++ vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); ++ ++ if (enable_pml) { ++ vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); ++ vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); ++ } ++ ++ if (cpu_has_vmx_encls_vmexit()) ++ vmcs_write64(ENCLS_EXITING_BITMAP, -1ull); ++ ++ if (pt_mode == PT_MODE_HOST_GUEST) { ++ memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); ++ /* Bit[6~0] are forced to 1, writes are ignored. */ ++ vmx->pt_desc.guest.output_mask = 0x7F; ++ vmcs_write64(GUEST_IA32_RTIT_CTL, 0); ++ } ++} ++ ++static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ struct msr_data apic_base_msr; ++ u64 cr0; ++ ++ vmx->rmode.vm86_active = 0; ++ vmx->spec_ctrl = 0; ++ ++ vmx->msr_ia32_umwait_control = 0; ++ ++ vcpu->arch.microcode_version = 0x100000000ULL; ++ vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val(); ++ vmx->hv_deadline_tsc = -1; ++ kvm_set_cr8(vcpu, 0); ++ ++ if (!init_event) { ++ apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | ++ MSR_IA32_APICBASE_ENABLE; ++ if (kvm_vcpu_is_reset_bsp(vcpu)) ++ apic_base_msr.data |= MSR_IA32_APICBASE_BSP; ++ apic_base_msr.host_initiated = true; ++ kvm_set_apic_base(vcpu, &apic_base_msr); ++ } ++ ++ vmx_segment_cache_clear(vmx); ++ ++ seg_setup(VCPU_SREG_CS); ++ vmcs_write16(GUEST_CS_SELECTOR, 0xf000); ++ vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); ++ ++ seg_setup(VCPU_SREG_DS); ++ seg_setup(VCPU_SREG_ES); ++ seg_setup(VCPU_SREG_FS); ++ seg_setup(VCPU_SREG_GS); ++ seg_setup(VCPU_SREG_SS); ++ ++ vmcs_write16(GUEST_TR_SELECTOR, 0); ++ vmcs_writel(GUEST_TR_BASE, 0); ++ vmcs_write32(GUEST_TR_LIMIT, 0xffff); ++ vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); ++ ++ vmcs_write16(GUEST_LDTR_SELECTOR, 0); ++ vmcs_writel(GUEST_LDTR_BASE, 0); ++ vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); ++ vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); ++ ++ if (!init_event) { ++ vmcs_write32(GUEST_SYSENTER_CS, 0); ++ vmcs_writel(GUEST_SYSENTER_ESP, 0); ++ vmcs_writel(GUEST_SYSENTER_EIP, 0); ++ vmcs_write64(GUEST_IA32_DEBUGCTL, 0); ++ } ++ ++ kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); ++ kvm_rip_write(vcpu, 0xfff0); ++ ++ vmcs_writel(GUEST_GDTR_BASE, 0); ++ vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); ++ ++ vmcs_writel(GUEST_IDTR_BASE, 0); ++ vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); ++ ++ vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); ++ vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); ++ vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); ++ if (kvm_mpx_supported()) ++ vmcs_write64(GUEST_BNDCFGS, 0); ++ ++ setup_msrs(vmx); ++ ++ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ ++ ++ if (cpu_has_vmx_tpr_shadow() && !init_event) { ++ vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); ++ if (cpu_need_tpr_shadow(vcpu)) ++ vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, ++ __pa(vcpu->arch.apic->regs)); ++ vmcs_write32(TPR_THRESHOLD, 0); ++ } ++ ++ kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); ++ ++ cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET; ++ vmx->vcpu.arch.cr0 = cr0; ++ vmx_set_cr0(vcpu, cr0); /* enter rmode */ ++ vmx_set_cr4(vcpu, 0); ++ vmx_set_efer(vcpu, 0); ++ ++ update_exception_bitmap(vcpu); ++ ++ vpid_sync_context(vmx->vpid); ++ if (init_event) ++ vmx_clear_hlt(vcpu); ++} ++ ++static void enable_irq_window(struct kvm_vcpu *vcpu) ++{ ++ exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); ++} ++ ++static void enable_nmi_window(struct kvm_vcpu *vcpu) ++{ ++ if (!enable_vnmi || ++ vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { ++ enable_irq_window(vcpu); ++ return; ++ } ++ ++ exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); ++} ++ ++static void vmx_inject_irq(struct kvm_vcpu *vcpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ uint32_t intr; ++ int irq = vcpu->arch.interrupt.nr; ++ ++ trace_kvm_inj_virq(irq); ++ ++ ++vcpu->stat.irq_injections; ++ if (vmx->rmode.vm86_active) { ++ int inc_eip = 0; ++ if (vcpu->arch.interrupt.soft) ++ inc_eip = vcpu->arch.event_exit_inst_len; ++ kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); ++ return; ++ } ++ intr = irq | INTR_INFO_VALID_MASK; ++ if (vcpu->arch.interrupt.soft) { ++ intr |= INTR_TYPE_SOFT_INTR; ++ vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, ++ vmx->vcpu.arch.event_exit_inst_len); ++ } else ++ intr |= INTR_TYPE_EXT_INTR; ++ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); ++ ++ vmx_clear_hlt(vcpu); ++} ++ ++static void vmx_inject_nmi(struct kvm_vcpu *vcpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ ++ if (!enable_vnmi) { ++ /* ++ * Tracking the NMI-blocked state in software is built upon ++ * finding the next open IRQ window. This, in turn, depends on ++ * well-behaving guests: They have to keep IRQs disabled at ++ * least as long as the NMI handler runs. Otherwise we may ++ * cause NMI nesting, maybe breaking the guest. But as this is ++ * highly unlikely, we can live with the residual risk. ++ */ ++ vmx->loaded_vmcs->soft_vnmi_blocked = 1; ++ vmx->loaded_vmcs->vnmi_blocked_time = 0; ++ } ++ ++ ++vcpu->stat.nmi_injections; ++ vmx->loaded_vmcs->nmi_known_unmasked = false; ++ ++ if (vmx->rmode.vm86_active) { ++ kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); ++ return; ++ } ++ ++ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, ++ INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); ++ ++ vmx_clear_hlt(vcpu); ++} ++ ++bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ bool masked; ++ ++ if (!enable_vnmi) ++ return vmx->loaded_vmcs->soft_vnmi_blocked; ++ if (vmx->loaded_vmcs->nmi_known_unmasked) ++ return false; ++ masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; ++ vmx->loaded_vmcs->nmi_known_unmasked = !masked; ++ return masked; ++} ++ ++void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ ++ if (!enable_vnmi) { ++ if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { ++ vmx->loaded_vmcs->soft_vnmi_blocked = masked; ++ vmx->loaded_vmcs->vnmi_blocked_time = 0; ++ } ++ } else { ++ vmx->loaded_vmcs->nmi_known_unmasked = !masked; ++ if (masked) ++ vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, ++ GUEST_INTR_STATE_NMI); ++ else ++ vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, ++ GUEST_INTR_STATE_NMI); ++ } ++} ++ ++static int vmx_nmi_allowed(struct kvm_vcpu *vcpu) ++{ ++ if (to_vmx(vcpu)->nested.nested_run_pending) ++ return 0; ++ ++ if (!enable_vnmi && ++ to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) ++ return 0; ++ ++ return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & ++ (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI ++ | GUEST_INTR_STATE_NMI)); ++} ++ ++static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu) ++{ ++ return (!to_vmx(vcpu)->nested.nested_run_pending && ++ vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) && ++ !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & ++ (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); ++} ++ ++static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) ++{ ++ int ret; ++ ++ if (enable_unrestricted_guest) ++ return 0; ++ ++ ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, ++ PAGE_SIZE * 3); ++ if (ret) ++ return ret; ++ to_kvm_vmx(kvm)->tss_addr = addr; ++ return init_rmode_tss(kvm); ++} ++ ++static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) ++{ ++ to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; ++ return 0; ++} ++ ++static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) ++{ ++ switch (vec) { ++ case BP_VECTOR: ++ /* ++ * Update instruction length as we may reinject the exception ++ * from user space while in guest debugging mode. ++ */ ++ to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = ++ vmcs_read32(VM_EXIT_INSTRUCTION_LEN); ++ if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) ++ return false; ++ /* fall through */ ++ case DB_VECTOR: ++ if (vcpu->guest_debug & ++ (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) ++ return false; ++ /* fall through */ ++ case DE_VECTOR: ++ case OF_VECTOR: ++ case BR_VECTOR: ++ case UD_VECTOR: ++ case DF_VECTOR: ++ case SS_VECTOR: ++ case GP_VECTOR: ++ case MF_VECTOR: ++ return true; ++ break; ++ } ++ return false; ++} ++ ++static int handle_rmode_exception(struct kvm_vcpu *vcpu, ++ int vec, u32 err_code) ++{ ++ /* ++ * Instruction with address size override prefix opcode 0x67 ++ * Cause the #SS fault with 0 error code in VM86 mode. ++ */ ++ if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { ++ if (kvm_emulate_instruction(vcpu, 0)) { ++ if (vcpu->arch.halt_request) { ++ vcpu->arch.halt_request = 0; ++ return kvm_vcpu_halt(vcpu); ++ } ++ return 1; ++ } ++ return 0; ++ } ++ ++ /* ++ * Forward all other exceptions that are valid in real mode. ++ * FIXME: Breaks guest debugging in real mode, needs to be fixed with ++ * the required debugging infrastructure rework. ++ */ ++ kvm_queue_exception(vcpu, vec); ++ return 1; ++} ++ ++/* ++ * Trigger machine check on the host. We assume all the MSRs are already set up ++ * by the CPU and that we still run on the same CPU as the MCE occurred on. ++ * We pass a fake environment to the machine check handler because we want ++ * the guest to be always treated like user space, no matter what context ++ * it used internally. ++ */ ++static void kvm_machine_check(void) ++{ ++#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64) ++ struct pt_regs regs = { ++ .cs = 3, /* Fake ring 3 no matter what the guest ran on */ ++ .flags = X86_EFLAGS_IF, ++ }; ++ ++ do_machine_check(®s, 0); ++#endif ++} ++ ++static int handle_machine_check(struct kvm_vcpu *vcpu) ++{ ++ /* handled by vmx_vcpu_run() */ ++ return 1; ++} ++ ++static int handle_exception_nmi(struct kvm_vcpu *vcpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ struct kvm_run *kvm_run = vcpu->run; ++ u32 intr_info, ex_no, error_code; ++ unsigned long cr2, rip, dr6; ++ u32 vect_info; ++ ++ vect_info = vmx->idt_vectoring_info; ++ intr_info = vmx->exit_intr_info; ++ ++ if (is_machine_check(intr_info) || is_nmi(intr_info)) ++ return 1; /* handled by handle_exception_nmi_irqoff() */ ++ ++ if (is_invalid_opcode(intr_info)) ++ return handle_ud(vcpu); ++ ++ error_code = 0; ++ if (intr_info & INTR_INFO_DELIVER_CODE_MASK) ++ error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); ++ ++ if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { ++ WARN_ON_ONCE(!enable_vmware_backdoor); ++ ++ /* ++ * VMware backdoor emulation on #GP interception only handles ++ * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero ++ * error code on #GP. ++ */ ++ if (error_code) { ++ kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); ++ return 1; ++ } ++ return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); ++ } ++ ++ /* ++ * The #PF with PFEC.RSVD = 1 indicates the guest is accessing ++ * MMIO, it is better to report an internal error. ++ * See the comments in vmx_handle_exit. ++ */ ++ if ((vect_info & VECTORING_INFO_VALID_MASK) && ++ !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { ++ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ++ vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; ++ vcpu->run->internal.ndata = 3; ++ vcpu->run->internal.data[0] = vect_info; ++ vcpu->run->internal.data[1] = intr_info; ++ vcpu->run->internal.data[2] = error_code; ++ return 0; ++ } ++ ++ if (is_page_fault(intr_info)) { ++ cr2 = vmcs_readl(EXIT_QUALIFICATION); ++ /* EPT won't cause page fault directly */ ++ WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept); ++ return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); ++ } ++ ++ ex_no = intr_info & INTR_INFO_VECTOR_MASK; ++ ++ if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) ++ return handle_rmode_exception(vcpu, ex_no, error_code); ++ ++ switch (ex_no) { ++ case AC_VECTOR: ++ kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); ++ return 1; ++ case DB_VECTOR: ++ dr6 = vmcs_readl(EXIT_QUALIFICATION); ++ if (!(vcpu->guest_debug & ++ (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { ++ vcpu->arch.dr6 &= ~DR_TRAP_BITS; ++ vcpu->arch.dr6 |= dr6 | DR6_RTM; ++ if (is_icebp(intr_info)) ++ WARN_ON(!skip_emulated_instruction(vcpu)); ++ ++ kvm_queue_exception(vcpu, DB_VECTOR); ++ return 1; ++ } ++ kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1; ++ kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); ++ /* fall through */ ++ case BP_VECTOR: ++ /* ++ * Update instruction length as we may reinject #BP from ++ * user space while in guest debugging mode. Reading it for ++ * #DB as well causes no harm, it is not used in that case. ++ */ ++ vmx->vcpu.arch.event_exit_inst_len = ++ vmcs_read32(VM_EXIT_INSTRUCTION_LEN); ++ kvm_run->exit_reason = KVM_EXIT_DEBUG; ++ rip = kvm_rip_read(vcpu); ++ kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip; ++ kvm_run->debug.arch.exception = ex_no; ++ break; ++ default: ++ kvm_run->exit_reason = KVM_EXIT_EXCEPTION; ++ kvm_run->ex.exception = ex_no; ++ kvm_run->ex.error_code = error_code; ++ break; ++ } ++ return 0; ++} ++ ++static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) ++{ ++ ++vcpu->stat.irq_exits; ++ return 1; ++} ++ ++static int handle_triple_fault(struct kvm_vcpu *vcpu) ++{ ++ vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; ++ vcpu->mmio_needed = 0; ++ return 0; ++} ++ ++static int handle_io(struct kvm_vcpu *vcpu) ++{ ++ unsigned long exit_qualification; ++ int size, in, string; ++ unsigned port; ++ ++ exit_qualification = vmcs_readl(EXIT_QUALIFICATION); ++ string = (exit_qualification & 16) != 0; ++ ++ ++vcpu->stat.io_exits; ++ ++ if (string) ++ return kvm_emulate_instruction(vcpu, 0); ++ ++ port = exit_qualification >> 16; ++ size = (exit_qualification & 7) + 1; ++ in = (exit_qualification & 8) != 0; ++ ++ return kvm_fast_pio(vcpu, size, port, in); ++} ++ ++static void ++vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) ++{ ++ /* ++ * Patch in the VMCALL instruction: ++ */ ++ hypercall[0] = 0x0f; ++ hypercall[1] = 0x01; ++ hypercall[2] = 0xc1; ++} ++ ++/* called to set cr0 as appropriate for a mov-to-cr0 exit. */ ++static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) ++{ ++ if (is_guest_mode(vcpu)) { ++ struct vmcs12 *vmcs12 = get_vmcs12(vcpu); ++ unsigned long orig_val = val; ++ ++ /* ++ * We get here when L2 changed cr0 in a way that did not change ++ * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), ++ * but did change L0 shadowed bits. So we first calculate the ++ * effective cr0 value that L1 would like to write into the ++ * hardware. It consists of the L2-owned bits from the new ++ * value combined with the L1-owned bits from L1's guest_cr0. ++ */ ++ val = (val & ~vmcs12->cr0_guest_host_mask) | ++ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); ++ ++ if (!nested_guest_cr0_valid(vcpu, val)) ++ return 1; ++ ++ if (kvm_set_cr0(vcpu, val)) ++ return 1; ++ vmcs_writel(CR0_READ_SHADOW, orig_val); ++ return 0; ++ } else { ++ if (to_vmx(vcpu)->nested.vmxon && ++ !nested_host_cr0_valid(vcpu, val)) ++ return 1; ++ ++ return kvm_set_cr0(vcpu, val); ++ } ++} ++ ++static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) ++{ ++ if (is_guest_mode(vcpu)) { ++ struct vmcs12 *vmcs12 = get_vmcs12(vcpu); ++ unsigned long orig_val = val; ++ ++ /* analogously to handle_set_cr0 */ ++ val = (val & ~vmcs12->cr4_guest_host_mask) | ++ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); ++ if (kvm_set_cr4(vcpu, val)) ++ return 1; ++ vmcs_writel(CR4_READ_SHADOW, orig_val); ++ return 0; ++ } else ++ return kvm_set_cr4(vcpu, val); ++} ++ ++static int handle_desc(struct kvm_vcpu *vcpu) ++{ ++ WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP)); ++ return kvm_emulate_instruction(vcpu, 0); ++} ++ ++static int handle_cr(struct kvm_vcpu *vcpu) ++{ ++ unsigned long exit_qualification, val; ++ int cr; ++ int reg; ++ int err; ++ int ret; ++ ++ exit_qualification = vmcs_readl(EXIT_QUALIFICATION); ++ cr = exit_qualification & 15; ++ reg = (exit_qualification >> 8) & 15; ++ switch ((exit_qualification >> 4) & 3) { ++ case 0: /* mov to cr */ ++ val = kvm_register_readl(vcpu, reg); ++ trace_kvm_cr_write(cr, val); ++ switch (cr) { ++ case 0: ++ err = handle_set_cr0(vcpu, val); ++ return kvm_complete_insn_gp(vcpu, err); ++ case 3: ++ WARN_ON_ONCE(enable_unrestricted_guest); ++ err = kvm_set_cr3(vcpu, val); ++ return kvm_complete_insn_gp(vcpu, err); ++ case 4: ++ err = handle_set_cr4(vcpu, val); ++ return kvm_complete_insn_gp(vcpu, err); ++ case 8: { ++ u8 cr8_prev = kvm_get_cr8(vcpu); ++ u8 cr8 = (u8)val; ++ err = kvm_set_cr8(vcpu, cr8); ++ ret = kvm_complete_insn_gp(vcpu, err); ++ if (lapic_in_kernel(vcpu)) ++ return ret; ++ if (cr8_prev <= cr8) ++ return ret; ++ /* ++ * TODO: we might be squashing a ++ * KVM_GUESTDBG_SINGLESTEP-triggered ++ * KVM_EXIT_DEBUG here. ++ */ ++ vcpu->run->exit_reason = KVM_EXIT_SET_TPR; ++ return 0; ++ } ++ } ++ break; ++ case 2: /* clts */ ++ WARN_ONCE(1, "Guest should always own CR0.TS"); ++ vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS)); ++ trace_kvm_cr_write(0, kvm_read_cr0(vcpu)); ++ return kvm_skip_emulated_instruction(vcpu); ++ case 1: /*mov from cr*/ ++ switch (cr) { ++ case 3: ++ WARN_ON_ONCE(enable_unrestricted_guest); ++ val = kvm_read_cr3(vcpu); ++ kvm_register_write(vcpu, reg, val); ++ trace_kvm_cr_read(cr, val); ++ return kvm_skip_emulated_instruction(vcpu); ++ case 8: ++ val = kvm_get_cr8(vcpu); ++ kvm_register_write(vcpu, reg, val); ++ trace_kvm_cr_read(cr, val); ++ return kvm_skip_emulated_instruction(vcpu); ++ } ++ break; ++ case 3: /* lmsw */ ++ val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; ++ trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); ++ kvm_lmsw(vcpu, val); ++ ++ return kvm_skip_emulated_instruction(vcpu); ++ default: ++ break; ++ } ++ vcpu->run->exit_reason = 0; ++ vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", ++ (int)(exit_qualification >> 4) & 3, cr); ++ return 0; ++} ++ ++static int handle_dr(struct kvm_vcpu *vcpu) ++{ ++ unsigned long exit_qualification; ++ int dr, dr7, reg; ++ ++ exit_qualification = vmcs_readl(EXIT_QUALIFICATION); ++ dr = exit_qualification & DEBUG_REG_ACCESS_NUM; ++ ++ /* First, if DR does not exist, trigger UD */ ++ if (!kvm_require_dr(vcpu, dr)) ++ return 1; ++ ++ /* Do not handle if the CPL > 0, will trigger GP on re-entry */ ++ if (!kvm_require_cpl(vcpu, 0)) ++ return 1; ++ dr7 = vmcs_readl(GUEST_DR7); ++ if (dr7 & DR7_GD) { ++ /* ++ * As the vm-exit takes precedence over the debug trap, we ++ * need to emulate the latter, either for the host or the ++ * guest debugging itself. ++ */ ++ if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { ++ vcpu->run->debug.arch.dr6 = vcpu->arch.dr6; ++ vcpu->run->debug.arch.dr7 = dr7; ++ vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); ++ vcpu->run->debug.arch.exception = DB_VECTOR; ++ vcpu->run->exit_reason = KVM_EXIT_DEBUG; ++ return 0; ++ } else { ++ vcpu->arch.dr6 &= ~DR_TRAP_BITS; ++ vcpu->arch.dr6 |= DR6_BD | DR6_RTM; ++ kvm_queue_exception(vcpu, DB_VECTOR); ++ return 1; ++ } ++ } ++ ++ if (vcpu->guest_debug == 0) { ++ exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); ++ ++ /* ++ * No more DR vmexits; force a reload of the debug registers ++ * and reenter on this instruction. The next vmexit will ++ * retrieve the full state of the debug registers. ++ */ ++ vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; ++ return 1; ++ } ++ ++ reg = DEBUG_REG_ACCESS_REG(exit_qualification); ++ if (exit_qualification & TYPE_MOV_FROM_DR) { ++ unsigned long val; ++ ++ if (kvm_get_dr(vcpu, dr, &val)) ++ return 1; ++ kvm_register_write(vcpu, reg, val); ++ } else ++ if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg))) ++ return 1; ++ ++ return kvm_skip_emulated_instruction(vcpu); ++} ++ ++static u64 vmx_get_dr6(struct kvm_vcpu *vcpu) ++{ ++ return vcpu->arch.dr6; ++} ++ ++static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val) ++{ ++} ++ ++static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) ++{ ++ get_debugreg(vcpu->arch.db[0], 0); ++ get_debugreg(vcpu->arch.db[1], 1); ++ get_debugreg(vcpu->arch.db[2], 2); ++ get_debugreg(vcpu->arch.db[3], 3); ++ get_debugreg(vcpu->arch.dr6, 6); ++ vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); ++ ++ vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; ++ exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); ++} ++ ++static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) ++{ ++ vmcs_writel(GUEST_DR7, val); ++} ++ ++static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) ++{ ++ kvm_apic_update_ppr(vcpu); ++ return 1; ++} ++ ++static int handle_interrupt_window(struct kvm_vcpu *vcpu) ++{ ++ exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); ++ ++ kvm_make_request(KVM_REQ_EVENT, vcpu); ++ ++ ++vcpu->stat.irq_window_exits; ++ return 1; ++} ++ ++static int handle_vmcall(struct kvm_vcpu *vcpu) ++{ ++ return kvm_emulate_hypercall(vcpu); ++} ++ ++static int handle_invd(struct kvm_vcpu *vcpu) ++{ ++ return kvm_emulate_instruction(vcpu, 0); ++} ++ ++static int handle_invlpg(struct kvm_vcpu *vcpu) ++{ ++ unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); ++ ++ kvm_mmu_invlpg(vcpu, exit_qualification); ++ return kvm_skip_emulated_instruction(vcpu); ++} ++ ++static int handle_rdpmc(struct kvm_vcpu *vcpu) ++{ ++ int err; ++ ++ err = kvm_rdpmc(vcpu); ++ return kvm_complete_insn_gp(vcpu, err); ++} ++ ++static int handle_wbinvd(struct kvm_vcpu *vcpu) ++{ ++ return kvm_emulate_wbinvd(vcpu); ++} ++ ++static int handle_xsetbv(struct kvm_vcpu *vcpu) ++{ ++ u64 new_bv = kvm_read_edx_eax(vcpu); ++ u32 index = kvm_rcx_read(vcpu); ++ ++ if (kvm_set_xcr(vcpu, index, new_bv) == 0) ++ return kvm_skip_emulated_instruction(vcpu); ++ return 1; ++} ++ ++static int handle_apic_access(struct kvm_vcpu *vcpu) ++{ ++ if (likely(fasteoi)) { ++ unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); ++ int access_type, offset; ++ ++ access_type = exit_qualification & APIC_ACCESS_TYPE; ++ offset = exit_qualification & APIC_ACCESS_OFFSET; ++ /* ++ * Sane guest uses MOV to write EOI, with written value ++ * not cared. So make a short-circuit here by avoiding ++ * heavy instruction emulation. ++ */ ++ if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && ++ (offset == APIC_EOI)) { ++ kvm_lapic_set_eoi(vcpu); ++ return kvm_skip_emulated_instruction(vcpu); ++ } ++ } ++ return kvm_emulate_instruction(vcpu, 0); ++} ++ ++static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) ++{ ++ unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); ++ int vector = exit_qualification & 0xff; ++ ++ /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ ++ kvm_apic_set_eoi_accelerated(vcpu, vector); ++ return 1; ++} ++ ++static int handle_apic_write(struct kvm_vcpu *vcpu) ++{ ++ unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); ++ u32 offset = exit_qualification & 0xfff; ++ ++ /* APIC-write VM exit is trap-like and thus no need to adjust IP */ ++ kvm_apic_write_nodecode(vcpu, offset); ++ return 1; ++} ++ ++static int handle_task_switch(struct kvm_vcpu *vcpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ unsigned long exit_qualification; ++ bool has_error_code = false; ++ u32 error_code = 0; ++ u16 tss_selector; ++ int reason, type, idt_v, idt_index; ++ ++ idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); ++ idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); ++ type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); ++ ++ exit_qualification = vmcs_readl(EXIT_QUALIFICATION); ++ ++ reason = (u32)exit_qualification >> 30; ++ if (reason == TASK_SWITCH_GATE && idt_v) { ++ switch (type) { ++ case INTR_TYPE_NMI_INTR: ++ vcpu->arch.nmi_injected = false; ++ vmx_set_nmi_mask(vcpu, true); ++ break; ++ case INTR_TYPE_EXT_INTR: ++ case INTR_TYPE_SOFT_INTR: ++ kvm_clear_interrupt_queue(vcpu); ++ break; ++ case INTR_TYPE_HARD_EXCEPTION: ++ if (vmx->idt_vectoring_info & ++ VECTORING_INFO_DELIVER_CODE_MASK) { ++ has_error_code = true; ++ error_code = ++ vmcs_read32(IDT_VECTORING_ERROR_CODE); ++ } ++ /* fall through */ ++ case INTR_TYPE_SOFT_EXCEPTION: ++ kvm_clear_exception_queue(vcpu); ++ break; ++ default: ++ break; ++ } ++ } ++ tss_selector = exit_qualification; ++ ++ if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && ++ type != INTR_TYPE_EXT_INTR && ++ type != INTR_TYPE_NMI_INTR)) ++ WARN_ON(!skip_emulated_instruction(vcpu)); ++ ++ /* ++ * TODO: What about debug traps on tss switch? ++ * Are we supposed to inject them and update dr6? ++ */ ++ return kvm_task_switch(vcpu, tss_selector, ++ type == INTR_TYPE_SOFT_INTR ? idt_index : -1, ++ reason, has_error_code, error_code); ++} ++ ++static int handle_ept_violation(struct kvm_vcpu *vcpu) ++{ ++ unsigned long exit_qualification; ++ gpa_t gpa; ++ u64 error_code; ++ ++ exit_qualification = vmcs_readl(EXIT_QUALIFICATION); ++ ++ /* ++ * EPT violation happened while executing iret from NMI, ++ * "blocked by NMI" bit has to be set before next VM entry. ++ * There are errata that may cause this bit to not be set: ++ * AAK134, BY25. ++ */ ++ if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && ++ enable_vnmi && ++ (exit_qualification & INTR_INFO_UNBLOCK_NMI)) ++ vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); ++ ++ gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); ++ trace_kvm_page_fault(gpa, exit_qualification); ++ ++ /* Is it a read fault? */ ++ error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) ++ ? PFERR_USER_MASK : 0; ++ /* Is it a write fault? */ ++ error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) ++ ? PFERR_WRITE_MASK : 0; ++ /* Is it a fetch fault? */ ++ error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) ++ ? PFERR_FETCH_MASK : 0; ++ /* ept page table entry is present? */ ++ error_code |= (exit_qualification & ++ (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE | ++ EPT_VIOLATION_EXECUTABLE)) ++ ? PFERR_PRESENT_MASK : 0; ++ ++ error_code |= (exit_qualification & 0x100) != 0 ? ++ PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; ++ ++ vcpu->arch.exit_qualification = exit_qualification; ++ return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); ++} ++ ++static int handle_ept_misconfig(struct kvm_vcpu *vcpu) ++{ ++ gpa_t gpa; ++ ++ /* ++ * A nested guest cannot optimize MMIO vmexits, because we have an ++ * nGPA here instead of the required GPA. ++ */ ++ gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); ++ if (!is_guest_mode(vcpu) && ++ !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { ++ trace_kvm_fast_mmio(gpa); ++ return kvm_skip_emulated_instruction(vcpu); ++ } ++ ++ return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); ++} ++ ++static int handle_nmi_window(struct kvm_vcpu *vcpu) ++{ ++ WARN_ON_ONCE(!enable_vnmi); ++ exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); ++ ++vcpu->stat.nmi_window_exits; ++ kvm_make_request(KVM_REQ_EVENT, vcpu); ++ ++ return 1; ++} ++ ++static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ bool intr_window_requested; ++ unsigned count = 130; ++ ++ /* ++ * We should never reach the point where we are emulating L2 ++ * due to invalid guest state as that means we incorrectly ++ * allowed a nested VMEntry with an invalid vmcs12. ++ */ ++ WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending); ++ ++ intr_window_requested = exec_controls_get(vmx) & ++ CPU_BASED_INTR_WINDOW_EXITING; ++ ++ while (vmx->emulation_required && count-- != 0) { ++ if (intr_window_requested && vmx_interrupt_allowed(vcpu)) ++ return handle_interrupt_window(&vmx->vcpu); ++ ++ if (kvm_test_request(KVM_REQ_EVENT, vcpu)) ++ return 1; ++ ++ if (!kvm_emulate_instruction(vcpu, 0)) ++ return 0; ++ ++ if (vmx->emulation_required && !vmx->rmode.vm86_active && ++ vcpu->arch.exception.pending) { ++ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ++ vcpu->run->internal.suberror = ++ KVM_INTERNAL_ERROR_EMULATION; ++ vcpu->run->internal.ndata = 0; ++ return 0; ++ } ++ ++ if (vcpu->arch.halt_request) { ++ vcpu->arch.halt_request = 0; ++ return kvm_vcpu_halt(vcpu); ++ } ++ ++ /* ++ * Note, return 1 and not 0, vcpu_run() is responsible for ++ * morphing the pending signal into the proper return code. ++ */ ++ if (signal_pending(current)) ++ return 1; ++ ++ if (need_resched()) ++ schedule(); ++ } ++ ++ return 1; ++} ++ ++static void grow_ple_window(struct kvm_vcpu *vcpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ unsigned int old = vmx->ple_window; ++ ++ vmx->ple_window = __grow_ple_window(old, ple_window, ++ ple_window_grow, ++ ple_window_max); ++ ++ if (vmx->ple_window != old) { ++ vmx->ple_window_dirty = true; ++ trace_kvm_ple_window_update(vcpu->vcpu_id, ++ vmx->ple_window, old); ++ } ++} ++ ++static void shrink_ple_window(struct kvm_vcpu *vcpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ unsigned int old = vmx->ple_window; ++ ++ vmx->ple_window = __shrink_ple_window(old, ple_window, ++ ple_window_shrink, ++ ple_window); ++ ++ if (vmx->ple_window != old) { ++ vmx->ple_window_dirty = true; ++ trace_kvm_ple_window_update(vcpu->vcpu_id, ++ vmx->ple_window, old); ++ } ++} ++ ++/* ++ * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR. ++ */ ++static void wakeup_handler(void) ++{ ++ struct kvm_vcpu *vcpu; ++ int cpu = smp_processor_id(); ++ ++ spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); ++ list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu), ++ blocked_vcpu_list) { ++ struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); ++ ++ if (pi_test_on(pi_desc) == 1) ++ kvm_vcpu_kick(vcpu); ++ } ++ spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); ++} ++ ++static void vmx_enable_tdp(void) ++{ ++ kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK, ++ enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull, ++ enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull, ++ 0ull, VMX_EPT_EXECUTABLE_MASK, ++ cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK, ++ VMX_EPT_RWX_MASK, 0ull); ++ ++ ept_set_mmio_spte_mask(); ++ kvm_enable_tdp(); ++} ++ ++/* ++ * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE ++ * exiting, so only get here on cpu with PAUSE-Loop-Exiting. ++ */ ++static int handle_pause(struct kvm_vcpu *vcpu) ++{ ++ if (!kvm_pause_in_guest(vcpu->kvm)) ++ grow_ple_window(vcpu); ++ ++ /* ++ * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" ++ * VM-execution control is ignored if CPL > 0. OTOH, KVM ++ * never set PAUSE_EXITING and just set PLE if supported, ++ * so the vcpu must be CPL=0 if it gets a PAUSE exit. ++ */ ++ kvm_vcpu_on_spin(vcpu, true); ++ return kvm_skip_emulated_instruction(vcpu); ++} ++ ++static int handle_nop(struct kvm_vcpu *vcpu) ++{ ++ return kvm_skip_emulated_instruction(vcpu); ++} ++ ++static int handle_mwait(struct kvm_vcpu *vcpu) ++{ ++ printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); ++ return handle_nop(vcpu); ++} ++ ++static int handle_invalid_op(struct kvm_vcpu *vcpu) ++{ ++ kvm_queue_exception(vcpu, UD_VECTOR); ++ return 1; ++} ++ ++static int handle_monitor_trap(struct kvm_vcpu *vcpu) ++{ ++ return 1; ++} ++ ++static int handle_monitor(struct kvm_vcpu *vcpu) ++{ ++ printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); ++ return handle_nop(vcpu); ++} ++ ++static int handle_invpcid(struct kvm_vcpu *vcpu) ++{ ++ u32 vmx_instruction_info; ++ unsigned long type; ++ bool pcid_enabled; ++ gva_t gva; ++ struct x86_exception e; ++ unsigned i; ++ unsigned long roots_to_free = 0; ++ struct { ++ u64 pcid; ++ u64 gla; ++ } operand; ++ ++ if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { ++ kvm_queue_exception(vcpu, UD_VECTOR); ++ return 1; ++ } ++ ++ vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); ++ type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); ++ ++ if (type > 3) { ++ kvm_inject_gp(vcpu, 0); ++ return 1; ++ } ++ ++ /* According to the Intel instruction reference, the memory operand ++ * is read even if it isn't needed (e.g., for type==all) ++ */ ++ if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), ++ vmx_instruction_info, false, ++ sizeof(operand), &gva)) ++ return 1; ++ ++ if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { ++ kvm_inject_page_fault(vcpu, &e); ++ return 1; ++ } ++ ++ if (operand.pcid >> 12 != 0) { ++ kvm_inject_gp(vcpu, 0); ++ return 1; ++ } ++ ++ pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); ++ ++ switch (type) { ++ case INVPCID_TYPE_INDIV_ADDR: ++ if ((!pcid_enabled && (operand.pcid != 0)) || ++ is_noncanonical_address(operand.gla, vcpu)) { ++ kvm_inject_gp(vcpu, 0); ++ return 1; ++ } ++ kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); ++ return kvm_skip_emulated_instruction(vcpu); ++ ++ case INVPCID_TYPE_SINGLE_CTXT: ++ if (!pcid_enabled && (operand.pcid != 0)) { ++ kvm_inject_gp(vcpu, 0); ++ return 1; ++ } ++ ++ if (kvm_get_active_pcid(vcpu) == operand.pcid) { ++ kvm_mmu_sync_roots(vcpu); ++ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); ++ } ++ ++ for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) ++ if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3) ++ == operand.pcid) ++ roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); ++ ++ kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free); ++ /* ++ * If neither the current cr3 nor any of the prev_roots use the ++ * given PCID, then nothing needs to be done here because a ++ * resync will happen anyway before switching to any other CR3. ++ */ ++ ++ return kvm_skip_emulated_instruction(vcpu); ++ ++ case INVPCID_TYPE_ALL_NON_GLOBAL: ++ /* ++ * Currently, KVM doesn't mark global entries in the shadow ++ * page tables, so a non-global flush just degenerates to a ++ * global flush. If needed, we could optimize this later by ++ * keeping track of global entries in shadow page tables. ++ */ ++ ++ /* fall-through */ ++ case INVPCID_TYPE_ALL_INCL_GLOBAL: ++ kvm_mmu_unload(vcpu); ++ return kvm_skip_emulated_instruction(vcpu); ++ ++ default: ++ BUG(); /* We have already checked above that type <= 3 */ ++ } ++} ++ ++static int handle_pml_full(struct kvm_vcpu *vcpu) ++{ ++ unsigned long exit_qualification; ++ ++ trace_kvm_pml_full(vcpu->vcpu_id); ++ ++ exit_qualification = vmcs_readl(EXIT_QUALIFICATION); ++ ++ /* ++ * PML buffer FULL happened while executing iret from NMI, ++ * "blocked by NMI" bit has to be set before next VM entry. ++ */ ++ if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && ++ enable_vnmi && ++ (exit_qualification & INTR_INFO_UNBLOCK_NMI)) ++ vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, ++ GUEST_INTR_STATE_NMI); ++ ++ /* ++ * PML buffer already flushed at beginning of VMEXIT. Nothing to do ++ * here.., and there's no userspace involvement needed for PML. ++ */ ++ return 1; ++} ++ ++static int handle_preemption_timer(struct kvm_vcpu *vcpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ ++ if (!vmx->req_immediate_exit && ++ !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) ++ kvm_lapic_expired_hv_timer(vcpu); ++ ++ return 1; ++} ++ ++/* ++ * When nested=0, all VMX instruction VM Exits filter here. The handlers ++ * are overwritten by nested_vmx_setup() when nested=1. ++ */ ++static int handle_vmx_instruction(struct kvm_vcpu *vcpu) ++{ ++ kvm_queue_exception(vcpu, UD_VECTOR); ++ return 1; ++} ++ ++static int handle_encls(struct kvm_vcpu *vcpu) ++{ ++ /* ++ * SGX virtualization is not yet supported. There is no software ++ * enable bit for SGX, so we have to trap ENCLS and inject a #UD ++ * to prevent the guest from executing ENCLS. ++ */ ++ kvm_queue_exception(vcpu, UD_VECTOR); ++ return 1; ++} ++ ++/* ++ * The exit handlers return 1 if the exit was handled fully and guest execution ++ * may resume. Otherwise they set the kvm_run parameter to indicate what needs ++ * to be done to userspace and return 0. ++ */ ++static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { ++ [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, ++ [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, ++ [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, ++ [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, ++ [EXIT_REASON_IO_INSTRUCTION] = handle_io, ++ [EXIT_REASON_CR_ACCESS] = handle_cr, ++ [EXIT_REASON_DR_ACCESS] = handle_dr, ++ [EXIT_REASON_CPUID] = kvm_emulate_cpuid, ++ [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, ++ [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, ++ [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, ++ [EXIT_REASON_HLT] = kvm_emulate_halt, ++ [EXIT_REASON_INVD] = handle_invd, ++ [EXIT_REASON_INVLPG] = handle_invlpg, ++ [EXIT_REASON_RDPMC] = handle_rdpmc, ++ [EXIT_REASON_VMCALL] = handle_vmcall, ++ [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, ++ [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, ++ [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, ++ [EXIT_REASON_VMPTRST] = handle_vmx_instruction, ++ [EXIT_REASON_VMREAD] = handle_vmx_instruction, ++ [EXIT_REASON_VMRESUME] = handle_vmx_instruction, ++ [EXIT_REASON_VMWRITE] = handle_vmx_instruction, ++ [EXIT_REASON_VMOFF] = handle_vmx_instruction, ++ [EXIT_REASON_VMON] = handle_vmx_instruction, ++ [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, ++ [EXIT_REASON_APIC_ACCESS] = handle_apic_access, ++ [EXIT_REASON_APIC_WRITE] = handle_apic_write, ++ [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, ++ [EXIT_REASON_WBINVD] = handle_wbinvd, ++ [EXIT_REASON_XSETBV] = handle_xsetbv, ++ [EXIT_REASON_TASK_SWITCH] = handle_task_switch, ++ [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, ++ [EXIT_REASON_GDTR_IDTR] = handle_desc, ++ [EXIT_REASON_LDTR_TR] = handle_desc, ++ [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, ++ [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, ++ [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, ++ [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait, ++ [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, ++ [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor, ++ [EXIT_REASON_INVEPT] = handle_vmx_instruction, ++ [EXIT_REASON_INVVPID] = handle_vmx_instruction, ++ [EXIT_REASON_RDRAND] = handle_invalid_op, ++ [EXIT_REASON_RDSEED] = handle_invalid_op, ++ [EXIT_REASON_PML_FULL] = handle_pml_full, ++ [EXIT_REASON_INVPCID] = handle_invpcid, ++ [EXIT_REASON_VMFUNC] = handle_vmx_instruction, ++ [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, ++ [EXIT_REASON_ENCLS] = handle_encls, ++}; ++ ++static const int kvm_vmx_max_exit_handlers = ++ ARRAY_SIZE(kvm_vmx_exit_handlers); ++ ++static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2) ++{ ++ *info1 = vmcs_readl(EXIT_QUALIFICATION); ++ *info2 = vmcs_read32(VM_EXIT_INTR_INFO); ++} ++ ++static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) ++{ ++ if (vmx->pml_pg) { ++ __free_page(vmx->pml_pg); ++ vmx->pml_pg = NULL; ++ } ++} ++ ++static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ u64 *pml_buf; ++ u16 pml_idx; ++ ++ pml_idx = vmcs_read16(GUEST_PML_INDEX); ++ ++ /* Do nothing if PML buffer is empty */ ++ if (pml_idx == (PML_ENTITY_NUM - 1)) ++ return; ++ ++ /* PML index always points to next available PML buffer entity */ ++ if (pml_idx >= PML_ENTITY_NUM) ++ pml_idx = 0; ++ else ++ pml_idx++; ++ ++ pml_buf = page_address(vmx->pml_pg); ++ for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { ++ u64 gpa; ++ ++ gpa = pml_buf[pml_idx]; ++ WARN_ON(gpa & (PAGE_SIZE - 1)); ++ kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); ++ } ++ ++ /* reset PML index */ ++ vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); ++} ++ ++/* ++ * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap. ++ * Called before reporting dirty_bitmap to userspace. ++ */ ++static void kvm_flush_pml_buffers(struct kvm *kvm) ++{ ++ int i; ++ struct kvm_vcpu *vcpu; ++ /* ++ * We only need to kick vcpu out of guest mode here, as PML buffer ++ * is flushed at beginning of all VMEXITs, and it's obvious that only ++ * vcpus running in guest are possible to have unflushed GPAs in PML ++ * buffer. ++ */ ++ kvm_for_each_vcpu(i, vcpu, kvm) ++ kvm_vcpu_kick(vcpu); ++} ++ ++static void vmx_dump_sel(char *name, uint32_t sel) ++{ ++ pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", ++ name, vmcs_read16(sel), ++ vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), ++ vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), ++ vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); ++} ++ ++static void vmx_dump_dtsel(char *name, uint32_t limit) ++{ ++ pr_err("%s limit=0x%08x, base=0x%016lx\n", ++ name, vmcs_read32(limit), ++ vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); ++} ++ ++void dump_vmcs(void) ++{ ++ u32 vmentry_ctl, vmexit_ctl; ++ u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; ++ unsigned long cr4; ++ u64 efer; ++ int i, n; ++ ++ if (!dump_invalid_vmcs) { ++ pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); ++ return; ++ } ++ ++ vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); ++ vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); ++ cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); ++ pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); ++ cr4 = vmcs_readl(GUEST_CR4); ++ efer = vmcs_read64(GUEST_IA32_EFER); ++ secondary_exec_control = 0; ++ if (cpu_has_secondary_exec_ctrls()) ++ secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); ++ ++ pr_err("*** Guest State ***\n"); ++ pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", ++ vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), ++ vmcs_readl(CR0_GUEST_HOST_MASK)); ++ pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", ++ cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); ++ pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); ++ if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) && ++ (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA)) ++ { ++ pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", ++ vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); ++ pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", ++ vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); ++ } ++ pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", ++ vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); ++ pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", ++ vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); ++ pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", ++ vmcs_readl(GUEST_SYSENTER_ESP), ++ vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); ++ vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); ++ vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); ++ vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); ++ vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); ++ vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); ++ vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); ++ vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); ++ vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); ++ vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); ++ vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); ++ if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) || ++ (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER))) ++ pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", ++ efer, vmcs_read64(GUEST_IA32_PAT)); ++ pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", ++ vmcs_read64(GUEST_IA32_DEBUGCTL), ++ vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); ++ if (cpu_has_load_perf_global_ctrl() && ++ vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) ++ pr_err("PerfGlobCtl = 0x%016llx\n", ++ vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); ++ if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) ++ pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); ++ pr_err("Interruptibility = %08x ActivityState = %08x\n", ++ vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), ++ vmcs_read32(GUEST_ACTIVITY_STATE)); ++ if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ++ pr_err("InterruptStatus = %04x\n", ++ vmcs_read16(GUEST_INTR_STATUS)); ++ ++ pr_err("*** Host State ***\n"); ++ pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", ++ vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); ++ pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", ++ vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), ++ vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), ++ vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), ++ vmcs_read16(HOST_TR_SELECTOR)); ++ pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", ++ vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), ++ vmcs_readl(HOST_TR_BASE)); ++ pr_err("GDTBase=%016lx IDTBase=%016lx\n", ++ vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); ++ pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", ++ vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), ++ vmcs_readl(HOST_CR4)); ++ pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", ++ vmcs_readl(HOST_IA32_SYSENTER_ESP), ++ vmcs_read32(HOST_IA32_SYSENTER_CS), ++ vmcs_readl(HOST_IA32_SYSENTER_EIP)); ++ if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER)) ++ pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", ++ vmcs_read64(HOST_IA32_EFER), ++ vmcs_read64(HOST_IA32_PAT)); ++ if (cpu_has_load_perf_global_ctrl() && ++ vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) ++ pr_err("PerfGlobCtl = 0x%016llx\n", ++ vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); ++ ++ pr_err("*** Control State ***\n"); ++ pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n", ++ pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control); ++ pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl); ++ pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", ++ vmcs_read32(EXCEPTION_BITMAP), ++ vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), ++ vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); ++ pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", ++ vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), ++ vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), ++ vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); ++ pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", ++ vmcs_read32(VM_EXIT_INTR_INFO), ++ vmcs_read32(VM_EXIT_INTR_ERROR_CODE), ++ vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); ++ pr_err(" reason=%08x qualification=%016lx\n", ++ vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); ++ pr_err("IDTVectoring: info=%08x errcode=%08x\n", ++ vmcs_read32(IDT_VECTORING_INFO_FIELD), ++ vmcs_read32(IDT_VECTORING_ERROR_CODE)); ++ pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); ++ if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) ++ pr_err("TSC Multiplier = 0x%016llx\n", ++ vmcs_read64(TSC_MULTIPLIER)); ++ if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { ++ if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { ++ u16 status = vmcs_read16(GUEST_INTR_STATUS); ++ pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); ++ } ++ pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); ++ if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) ++ pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); ++ pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); ++ } ++ if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) ++ pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); ++ if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) ++ pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); ++ n = vmcs_read32(CR3_TARGET_COUNT); ++ for (i = 0; i + 1 < n; i += 4) ++ pr_err("CR3 target%u=%016lx target%u=%016lx\n", ++ i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2), ++ i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2)); ++ if (i < n) ++ pr_err("CR3 target%u=%016lx\n", ++ i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2)); ++ if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) ++ pr_err("PLE Gap=%08x Window=%08x\n", ++ vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); ++ if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) ++ pr_err("Virtual processor ID = 0x%04x\n", ++ vmcs_read16(VIRTUAL_PROCESSOR_ID)); ++} ++ ++/* ++ * The guest has exited. See if we can fix it or if we need userspace ++ * assistance. ++ */ ++static int vmx_handle_exit(struct kvm_vcpu *vcpu, ++ enum exit_fastpath_completion exit_fastpath) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ u32 exit_reason = vmx->exit_reason; ++ u32 vectoring_info = vmx->idt_vectoring_info; ++ ++ trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX); ++ ++ /* ++ * Flush logged GPAs PML buffer, this will make dirty_bitmap more ++ * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before ++ * querying dirty_bitmap, we only need to kick all vcpus out of guest ++ * mode as if vcpus is in root mode, the PML buffer must has been ++ * flushed already. ++ */ ++ if (enable_pml) ++ vmx_flush_pml_buffer(vcpu); ++ ++ /* If guest state is invalid, start emulating */ ++ if (vmx->emulation_required) ++ return handle_invalid_guest_state(vcpu); ++ ++ if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason)) ++ return nested_vmx_reflect_vmexit(vcpu, exit_reason); ++ ++ if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) { ++ dump_vmcs(); ++ vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; ++ vcpu->run->fail_entry.hardware_entry_failure_reason ++ = exit_reason; ++ return 0; ++ } ++ ++ if (unlikely(vmx->fail)) { ++ dump_vmcs(); ++ vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; ++ vcpu->run->fail_entry.hardware_entry_failure_reason ++ = vmcs_read32(VM_INSTRUCTION_ERROR); ++ return 0; ++ } ++ ++ /* ++ * Note: ++ * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by ++ * delivery event since it indicates guest is accessing MMIO. ++ * The vm-exit can be triggered again after return to guest that ++ * will cause infinite loop. ++ */ ++ if ((vectoring_info & VECTORING_INFO_VALID_MASK) && ++ (exit_reason != EXIT_REASON_EXCEPTION_NMI && ++ exit_reason != EXIT_REASON_EPT_VIOLATION && ++ exit_reason != EXIT_REASON_PML_FULL && ++ exit_reason != EXIT_REASON_TASK_SWITCH)) { ++ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ++ vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; ++ vcpu->run->internal.ndata = 3; ++ vcpu->run->internal.data[0] = vectoring_info; ++ vcpu->run->internal.data[1] = exit_reason; ++ vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; ++ if (exit_reason == EXIT_REASON_EPT_MISCONFIG) { ++ vcpu->run->internal.ndata++; ++ vcpu->run->internal.data[3] = ++ vmcs_read64(GUEST_PHYSICAL_ADDRESS); ++ } ++ return 0; ++ } ++ ++ if (unlikely(!enable_vnmi && ++ vmx->loaded_vmcs->soft_vnmi_blocked)) { ++ if (vmx_interrupt_allowed(vcpu)) { ++ vmx->loaded_vmcs->soft_vnmi_blocked = 0; ++ } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && ++ vcpu->arch.nmi_pending) { ++ /* ++ * This CPU don't support us in finding the end of an ++ * NMI-blocked window if the guest runs with IRQs ++ * disabled. So we pull the trigger after 1 s of ++ * futile waiting, but inform the user about this. ++ */ ++ printk(KERN_WARNING "%s: Breaking out of NMI-blocked " ++ "state on VCPU %d after 1 s timeout\n", ++ __func__, vcpu->vcpu_id); ++ vmx->loaded_vmcs->soft_vnmi_blocked = 0; ++ } ++ } ++ ++ if (exit_fastpath == EXIT_FASTPATH_SKIP_EMUL_INS) { ++ kvm_skip_emulated_instruction(vcpu); ++ return 1; ++ } else if (exit_reason < kvm_vmx_max_exit_handlers ++ && kvm_vmx_exit_handlers[exit_reason]) { ++#ifdef CONFIG_RETPOLINE ++ if (exit_reason == EXIT_REASON_MSR_WRITE) ++ return kvm_emulate_wrmsr(vcpu); ++ else if (exit_reason == EXIT_REASON_PREEMPTION_TIMER) ++ return handle_preemption_timer(vcpu); ++ else if (exit_reason == EXIT_REASON_INTERRUPT_WINDOW) ++ return handle_interrupt_window(vcpu); ++ else if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT) ++ return handle_external_interrupt(vcpu); ++ else if (exit_reason == EXIT_REASON_HLT) ++ return kvm_emulate_halt(vcpu); ++ else if (exit_reason == EXIT_REASON_EPT_MISCONFIG) ++ return handle_ept_misconfig(vcpu); ++#endif ++ return kvm_vmx_exit_handlers[exit_reason](vcpu); ++ } else { ++ vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", ++ exit_reason); ++ dump_vmcs(); ++ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ++ vcpu->run->internal.suberror = ++ KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; ++ vcpu->run->internal.ndata = 1; ++ vcpu->run->internal.data[0] = exit_reason; ++ return 0; ++ } ++} ++ ++/* ++ * Software based L1D cache flush which is used when microcode providing ++ * the cache control MSR is not loaded. ++ * ++ * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to ++ * flush it is required to read in 64 KiB because the replacement algorithm ++ * is not exactly LRU. This could be sized at runtime via topology ++ * information but as all relevant affected CPUs have 32KiB L1D cache size ++ * there is no point in doing so. ++ */ ++static void vmx_l1d_flush(struct kvm_vcpu *vcpu) ++{ ++ int size = PAGE_SIZE << L1D_CACHE_ORDER; ++ ++ /* ++ * This code is only executed when the the flush mode is 'cond' or ++ * 'always' ++ */ ++ if (static_branch_likely(&vmx_l1d_flush_cond)) { ++ bool flush_l1d; ++ ++ /* ++ * Clear the per-vcpu flush bit, it gets set again ++ * either from vcpu_run() or from one of the unsafe ++ * VMEXIT handlers. ++ */ ++ flush_l1d = vcpu->arch.l1tf_flush_l1d; ++ vcpu->arch.l1tf_flush_l1d = false; ++ ++ /* ++ * Clear the per-cpu flush bit, it gets set again from ++ * the interrupt handlers. ++ */ ++ flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); ++ kvm_clear_cpu_l1tf_flush_l1d(); ++ ++ if (!flush_l1d) ++ return; ++ } ++ ++ vcpu->stat.l1d_flush++; ++ ++ if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { ++ wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); ++ return; ++ } ++ ++ asm volatile( ++ /* First ensure the pages are in the TLB */ ++ "xorl %%eax, %%eax\n" ++ ".Lpopulate_tlb:\n\t" ++ "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" ++ "addl $4096, %%eax\n\t" ++ "cmpl %%eax, %[size]\n\t" ++ "jne .Lpopulate_tlb\n\t" ++ "xorl %%eax, %%eax\n\t" ++ "cpuid\n\t" ++ /* Now fill the cache */ ++ "xorl %%eax, %%eax\n" ++ ".Lfill_cache:\n" ++ "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" ++ "addl $64, %%eax\n\t" ++ "cmpl %%eax, %[size]\n\t" ++ "jne .Lfill_cache\n\t" ++ "lfence\n" ++ :: [flush_pages] "r" (vmx_l1d_flush_pages), ++ [size] "r" (size) ++ : "eax", "ebx", "ecx", "edx"); ++} ++ ++static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) ++{ ++ struct vmcs12 *vmcs12 = get_vmcs12(vcpu); ++ int tpr_threshold; ++ ++ if (is_guest_mode(vcpu) && ++ nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) ++ return; ++ ++ tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; ++ if (is_guest_mode(vcpu)) ++ to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; ++ else ++ vmcs_write32(TPR_THRESHOLD, tpr_threshold); ++} ++ ++void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ u32 sec_exec_control; ++ ++ if (!lapic_in_kernel(vcpu)) ++ return; ++ ++ if (!flexpriority_enabled && ++ !cpu_has_vmx_virtualize_x2apic_mode()) ++ return; ++ ++ /* Postpone execution until vmcs01 is the current VMCS. */ ++ if (is_guest_mode(vcpu)) { ++ vmx->nested.change_vmcs01_virtual_apic_mode = true; ++ return; ++ } ++ ++ sec_exec_control = secondary_exec_controls_get(vmx); ++ sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | ++ SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); ++ ++ switch (kvm_get_apic_mode(vcpu)) { ++ case LAPIC_MODE_INVALID: ++ WARN_ONCE(true, "Invalid local APIC state"); ++ case LAPIC_MODE_DISABLED: ++ break; ++ case LAPIC_MODE_XAPIC: ++ if (flexpriority_enabled) { ++ sec_exec_control |= ++ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; ++ vmx_flush_tlb(vcpu, true); ++ } ++ break; ++ case LAPIC_MODE_X2APIC: ++ if (cpu_has_vmx_virtualize_x2apic_mode()) ++ sec_exec_control |= ++ SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; ++ break; ++ } ++ secondary_exec_controls_set(vmx, sec_exec_control); ++ ++ vmx_update_msr_bitmap(vcpu); ++} ++ ++static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa) ++{ ++ if (!is_guest_mode(vcpu)) { ++ vmcs_write64(APIC_ACCESS_ADDR, hpa); ++ vmx_flush_tlb(vcpu, true); ++ } ++} ++ ++static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) ++{ ++ u16 status; ++ u8 old; ++ ++ if (max_isr == -1) ++ max_isr = 0; ++ ++ status = vmcs_read16(GUEST_INTR_STATUS); ++ old = status >> 8; ++ if (max_isr != old) { ++ status &= 0xff; ++ status |= max_isr << 8; ++ vmcs_write16(GUEST_INTR_STATUS, status); ++ } ++} ++ ++static void vmx_set_rvi(int vector) ++{ ++ u16 status; ++ u8 old; ++ ++ if (vector == -1) ++ vector = 0; ++ ++ status = vmcs_read16(GUEST_INTR_STATUS); ++ old = (u8)status & 0xff; ++ if ((u8)vector != old) { ++ status &= ~0xff; ++ status |= (u8)vector; ++ vmcs_write16(GUEST_INTR_STATUS, status); ++ } ++} ++ ++static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) ++{ ++ /* ++ * When running L2, updating RVI is only relevant when ++ * vmcs12 virtual-interrupt-delivery enabled. ++ * However, it can be enabled only when L1 also ++ * intercepts external-interrupts and in that case ++ * we should not update vmcs02 RVI but instead intercept ++ * interrupt. Therefore, do nothing when running L2. ++ */ ++ if (!is_guest_mode(vcpu)) ++ vmx_set_rvi(max_irr); ++} ++ ++static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ int max_irr; ++ bool max_irr_updated; ++ ++ WARN_ON(!vcpu->arch.apicv_active); ++ if (pi_test_on(&vmx->pi_desc)) { ++ pi_clear_on(&vmx->pi_desc); ++ /* ++ * IOMMU can write to PID.ON, so the barrier matters even on UP. ++ * But on x86 this is just a compiler barrier anyway. ++ */ ++ smp_mb__after_atomic(); ++ max_irr_updated = ++ kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); ++ ++ /* ++ * If we are running L2 and L1 has a new pending interrupt ++ * which can be injected, we should re-evaluate ++ * what should be done with this new L1 interrupt. ++ * If L1 intercepts external-interrupts, we should ++ * exit from L2 to L1. Otherwise, interrupt should be ++ * delivered directly to L2. ++ */ ++ if (is_guest_mode(vcpu) && max_irr_updated) { ++ if (nested_exit_on_intr(vcpu)) ++ kvm_vcpu_exiting_guest_mode(vcpu); ++ else ++ kvm_make_request(KVM_REQ_EVENT, vcpu); ++ } ++ } else { ++ max_irr = kvm_lapic_find_highest_irr(vcpu); ++ } ++ vmx_hwapic_irr_update(vcpu, max_irr); ++ return max_irr; ++} ++ ++static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu) ++{ ++ struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); ++ ++ return pi_test_on(pi_desc) || ++ (pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc)); ++} ++ ++static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) ++{ ++ if (!kvm_vcpu_apicv_active(vcpu)) ++ return; ++ ++ vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); ++ vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); ++ vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); ++ vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); ++} ++ ++static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ ++ pi_clear_on(&vmx->pi_desc); ++ memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); ++} ++ ++static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx) ++{ ++ vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); ++ ++ /* if exit due to PF check for async PF */ ++ if (is_page_fault(vmx->exit_intr_info)) ++ vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason(); ++ ++ /* Handle machine checks before interrupts are enabled */ ++ if (is_machine_check(vmx->exit_intr_info)) ++ kvm_machine_check(); ++ ++ /* We need to handle NMIs before interrupts are enabled */ ++ if (is_nmi(vmx->exit_intr_info)) { ++ kvm_before_interrupt(&vmx->vcpu); ++ asm("int $2"); ++ kvm_after_interrupt(&vmx->vcpu); ++ } ++} ++ ++static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) ++{ ++ unsigned int vector; ++ unsigned long entry; ++#ifdef CONFIG_X86_64 ++ unsigned long tmp; ++#endif ++ gate_desc *desc; ++ u32 intr_info; ++ ++ intr_info = vmcs_read32(VM_EXIT_INTR_INFO); ++ if (WARN_ONCE(!is_external_intr(intr_info), ++ "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info)) ++ return; ++ ++ vector = intr_info & INTR_INFO_VECTOR_MASK; ++ desc = (gate_desc *)host_idt_base + vector; ++ entry = gate_offset(desc); ++ ++ kvm_before_interrupt(vcpu); ++ ++ asm volatile( ++#ifdef CONFIG_X86_64 ++ "mov %%" _ASM_SP ", %[sp]\n\t" ++ "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t" ++ "push $%c[ss]\n\t" ++ "push %[sp]\n\t" ++#endif ++ "pushf\n\t" ++ __ASM_SIZE(push) " $%c[cs]\n\t" ++ CALL_NOSPEC ++ : ++#ifdef CONFIG_X86_64 ++ [sp]"=&r"(tmp), ++#endif ++ ASM_CALL_CONSTRAINT ++ : ++ THUNK_TARGET(entry), ++ [ss]"i"(__KERNEL_DS), ++ [cs]"i"(__KERNEL_CS) ++ ); ++ ++ kvm_after_interrupt(vcpu); ++} ++STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff); ++ ++static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu, ++ enum exit_fastpath_completion *exit_fastpath) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ ++ if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT) ++ handle_external_interrupt_irqoff(vcpu); ++ else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI) ++ handle_exception_nmi_irqoff(vmx); ++ else if (!is_guest_mode(vcpu) && ++ vmx->exit_reason == EXIT_REASON_MSR_WRITE) ++ *exit_fastpath = handle_fastpath_set_msr_irqoff(vcpu); ++} ++ ++static bool vmx_has_emulated_msr(int index) ++{ ++ switch (index) { ++ case MSR_IA32_SMBASE: ++ /* ++ * We cannot do SMM unless we can run the guest in big ++ * real mode. ++ */ ++ return enable_unrestricted_guest || emulate_invalid_guest_state; ++ case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: ++ return nested; ++ case MSR_AMD64_VIRT_SPEC_CTRL: ++ /* This is AMD only. */ ++ return false; ++ default: ++ return true; ++ } ++} ++ ++static bool vmx_pt_supported(void) ++{ ++ return pt_mode == PT_MODE_HOST_GUEST; ++} ++ ++static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) ++{ ++ u32 exit_intr_info; ++ bool unblock_nmi; ++ u8 vector; ++ bool idtv_info_valid; ++ ++ idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; ++ ++ if (enable_vnmi) { ++ if (vmx->loaded_vmcs->nmi_known_unmasked) ++ return; ++ /* ++ * Can't use vmx->exit_intr_info since we're not sure what ++ * the exit reason is. ++ */ ++ exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); ++ unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; ++ vector = exit_intr_info & INTR_INFO_VECTOR_MASK; ++ /* ++ * SDM 3: 27.7.1.2 (September 2008) ++ * Re-set bit "block by NMI" before VM entry if vmexit caused by ++ * a guest IRET fault. ++ * SDM 3: 23.2.2 (September 2008) ++ * Bit 12 is undefined in any of the following cases: ++ * If the VM exit sets the valid bit in the IDT-vectoring ++ * information field. ++ * If the VM exit is due to a double fault. ++ */ ++ if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && ++ vector != DF_VECTOR && !idtv_info_valid) ++ vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, ++ GUEST_INTR_STATE_NMI); ++ else ++ vmx->loaded_vmcs->nmi_known_unmasked = ++ !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) ++ & GUEST_INTR_STATE_NMI); ++ } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) ++ vmx->loaded_vmcs->vnmi_blocked_time += ++ ktime_to_ns(ktime_sub(ktime_get(), ++ vmx->loaded_vmcs->entry_time)); ++} ++ ++static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, ++ u32 idt_vectoring_info, ++ int instr_len_field, ++ int error_code_field) ++{ ++ u8 vector; ++ int type; ++ bool idtv_info_valid; ++ ++ idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; ++ ++ vcpu->arch.nmi_injected = false; ++ kvm_clear_exception_queue(vcpu); ++ kvm_clear_interrupt_queue(vcpu); ++ ++ if (!idtv_info_valid) ++ return; ++ ++ kvm_make_request(KVM_REQ_EVENT, vcpu); ++ ++ vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; ++ type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; ++ ++ switch (type) { ++ case INTR_TYPE_NMI_INTR: ++ vcpu->arch.nmi_injected = true; ++ /* ++ * SDM 3: 27.7.1.2 (September 2008) ++ * Clear bit "block by NMI" before VM entry if a NMI ++ * delivery faulted. ++ */ ++ vmx_set_nmi_mask(vcpu, false); ++ break; ++ case INTR_TYPE_SOFT_EXCEPTION: ++ vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); ++ /* fall through */ ++ case INTR_TYPE_HARD_EXCEPTION: ++ if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { ++ u32 err = vmcs_read32(error_code_field); ++ kvm_requeue_exception_e(vcpu, vector, err); ++ } else ++ kvm_requeue_exception(vcpu, vector); ++ break; ++ case INTR_TYPE_SOFT_INTR: ++ vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); ++ /* fall through */ ++ case INTR_TYPE_EXT_INTR: ++ kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); ++ break; ++ default: ++ break; ++ } ++} ++ ++static void vmx_complete_interrupts(struct vcpu_vmx *vmx) ++{ ++ __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, ++ VM_EXIT_INSTRUCTION_LEN, ++ IDT_VECTORING_ERROR_CODE); ++} ++ ++static void vmx_cancel_injection(struct kvm_vcpu *vcpu) ++{ ++ __vmx_complete_interrupts(vcpu, ++ vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), ++ VM_ENTRY_INSTRUCTION_LEN, ++ VM_ENTRY_EXCEPTION_ERROR_CODE); ++ ++ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); ++} ++ ++static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) ++{ ++ int i, nr_msrs; ++ struct perf_guest_switch_msr *msrs; ++ ++ msrs = perf_guest_get_msrs(&nr_msrs); ++ ++ if (!msrs) ++ return; ++ ++ for (i = 0; i < nr_msrs; i++) ++ if (msrs[i].host == msrs[i].guest) ++ clear_atomic_switch_msr(vmx, msrs[i].msr); ++ else ++ add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, ++ msrs[i].host, false); ++} ++ ++static void atomic_switch_umwait_control_msr(struct vcpu_vmx *vmx) ++{ ++ u32 host_umwait_control; ++ ++ if (!vmx_has_waitpkg(vmx)) ++ return; ++ ++ host_umwait_control = get_umwait_control_msr(); ++ ++ if (vmx->msr_ia32_umwait_control != host_umwait_control) ++ add_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL, ++ vmx->msr_ia32_umwait_control, ++ host_umwait_control, false); ++ else ++ clear_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL); ++} ++ ++static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ u64 tscl; ++ u32 delta_tsc; ++ ++ if (vmx->req_immediate_exit) { ++ vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); ++ vmx->loaded_vmcs->hv_timer_soft_disabled = false; ++ } else if (vmx->hv_deadline_tsc != -1) { ++ tscl = rdtsc(); ++ if (vmx->hv_deadline_tsc > tscl) ++ /* set_hv_timer ensures the delta fits in 32-bits */ ++ delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> ++ cpu_preemption_timer_multi); ++ else ++ delta_tsc = 0; ++ ++ vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); ++ vmx->loaded_vmcs->hv_timer_soft_disabled = false; ++ } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { ++ vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); ++ vmx->loaded_vmcs->hv_timer_soft_disabled = true; ++ } ++} ++ ++void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) ++{ ++ if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { ++ vmx->loaded_vmcs->host_state.rsp = host_rsp; ++ vmcs_writel(HOST_RSP, host_rsp); ++ } ++} ++ ++bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched); ++ ++static void vmx_vcpu_run(struct kvm_vcpu *vcpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ unsigned long cr3, cr4; ++ ++ /* Record the guest's net vcpu time for enforced NMI injections. */ ++ if (unlikely(!enable_vnmi && ++ vmx->loaded_vmcs->soft_vnmi_blocked)) ++ vmx->loaded_vmcs->entry_time = ktime_get(); ++ ++ /* Don't enter VMX if guest state is invalid, let the exit handler ++ start emulation until we arrive back to a valid state */ ++ if (vmx->emulation_required) ++ return; ++ ++ if (vmx->ple_window_dirty) { ++ vmx->ple_window_dirty = false; ++ vmcs_write32(PLE_WINDOW, vmx->ple_window); ++ } ++ ++ if (vmx->nested.need_vmcs12_to_shadow_sync) ++ nested_sync_vmcs12_to_shadow(vcpu); ++ ++ if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) ++ vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); ++ if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) ++ vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); ++ ++ cr3 = __get_current_cr3_fast(); ++ if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { ++ vmcs_writel(HOST_CR3, cr3); ++ vmx->loaded_vmcs->host_state.cr3 = cr3; ++ } ++ ++ cr4 = cr4_read_shadow(); ++ if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { ++ vmcs_writel(HOST_CR4, cr4); ++ vmx->loaded_vmcs->host_state.cr4 = cr4; ++ } ++ ++ /* When single-stepping over STI and MOV SS, we must clear the ++ * corresponding interruptibility bits in the guest state. Otherwise ++ * vmentry fails as it then expects bit 14 (BS) in pending debug ++ * exceptions being set, but that's not correct for the guest debugging ++ * case. */ ++ if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) ++ vmx_set_interrupt_shadow(vcpu, 0); ++ ++ kvm_load_guest_xsave_state(vcpu); ++ ++ if (static_cpu_has(X86_FEATURE_PKU) && ++ kvm_read_cr4_bits(vcpu, X86_CR4_PKE) && ++ vcpu->arch.pkru != vmx->host_pkru) ++ __write_pkru(vcpu->arch.pkru); ++ ++ pt_guest_enter(vmx); ++ ++ atomic_switch_perf_msrs(vmx); ++ atomic_switch_umwait_control_msr(vmx); ++ ++ if (enable_preemption_timer) ++ vmx_update_hv_timer(vcpu); ++ ++ if (lapic_in_kernel(vcpu) && ++ vcpu->arch.apic->lapic_timer.timer_advance_ns) ++ kvm_wait_lapic_expire(vcpu); ++ ++ /* ++ * If this vCPU has touched SPEC_CTRL, restore the guest's value if ++ * it's non-zero. Since vmentry is serialising on affected CPUs, there ++ * is no need to worry about the conditional branch over the wrmsr ++ * being speculatively taken. ++ */ ++ x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0); ++ ++ /* L1D Flush includes CPU buffer clear to mitigate MDS */ ++ if (static_branch_unlikely(&vmx_l1d_should_flush)) ++ vmx_l1d_flush(vcpu); ++ else if (static_branch_unlikely(&mds_user_clear)) ++ mds_clear_cpu_buffers(); ++ ++ if (vcpu->arch.cr2 != read_cr2()) ++ write_cr2(vcpu->arch.cr2); ++ ++ vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, ++ vmx->loaded_vmcs->launched); ++ ++ vcpu->arch.cr2 = read_cr2(); ++ ++ /* ++ * We do not use IBRS in the kernel. If this vCPU has used the ++ * SPEC_CTRL MSR it may have left it on; save the value and ++ * turn it off. This is much more efficient than blindly adding ++ * it to the atomic save/restore list. Especially as the former ++ * (Saving guest MSRs on vmexit) doesn't even exist in KVM. ++ * ++ * For non-nested case: ++ * If the L01 MSR bitmap does not intercept the MSR, then we need to ++ * save it. ++ * ++ * For nested case: ++ * If the L02 MSR bitmap does not intercept the MSR, then we need to ++ * save it. ++ */ ++ if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) ++ vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); ++ ++ x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0); ++ ++ /* All fields are clean at this point */ ++ if (static_branch_unlikely(&enable_evmcs)) ++ current_evmcs->hv_clean_fields |= ++ HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; ++ ++ if (static_branch_unlikely(&enable_evmcs)) ++ current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index; ++ ++ /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ ++ if (vmx->host_debugctlmsr) ++ update_debugctlmsr(vmx->host_debugctlmsr); ++ ++#ifndef CONFIG_X86_64 ++ /* ++ * The sysexit path does not restore ds/es, so we must set them to ++ * a reasonable value ourselves. ++ * ++ * We can't defer this to vmx_prepare_switch_to_host() since that ++ * function may be executed in interrupt context, which saves and ++ * restore segments around it, nullifying its effect. ++ */ ++ loadsegment(ds, __USER_DS); ++ loadsegment(es, __USER_DS); ++#endif ++ ++ vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP) ++ | (1 << VCPU_EXREG_RFLAGS) ++ | (1 << VCPU_EXREG_PDPTR) ++ | (1 << VCPU_EXREG_SEGMENTS) ++ | (1 << VCPU_EXREG_CR3)); ++ vcpu->arch.regs_dirty = 0; ++ ++ pt_guest_exit(vmx); ++ ++ /* ++ * eager fpu is enabled if PKEY is supported and CR4 is switched ++ * back on host, so it is safe to read guest PKRU from current ++ * XSAVE. ++ */ ++ if (static_cpu_has(X86_FEATURE_PKU) && ++ kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) { ++ vcpu->arch.pkru = rdpkru(); ++ if (vcpu->arch.pkru != vmx->host_pkru) ++ __write_pkru(vmx->host_pkru); ++ } ++ ++ kvm_load_host_xsave_state(vcpu); ++ ++ vmx->nested.nested_run_pending = 0; ++ vmx->idt_vectoring_info = 0; ++ ++ vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON); ++ if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY) ++ kvm_machine_check(); ++ ++ if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) ++ return; ++ ++ vmx->loaded_vmcs->launched = 1; ++ vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); ++ ++ vmx_recover_nmi_blocking(vmx); ++ vmx_complete_interrupts(vmx); ++} ++ ++static struct kvm *vmx_vm_alloc(void) ++{ ++ struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx), ++ GFP_KERNEL_ACCOUNT | __GFP_ZERO, ++ PAGE_KERNEL); ++ return &kvm_vmx->kvm; ++} ++ ++static void vmx_vm_free(struct kvm *kvm) ++{ ++ kfree(kvm->arch.hyperv.hv_pa_pg); ++ vfree(to_kvm_vmx(kvm)); ++} ++ ++static void vmx_free_vcpu(struct kvm_vcpu *vcpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ ++ if (enable_pml) ++ vmx_destroy_pml_buffer(vmx); ++ free_vpid(vmx->vpid); ++ nested_vmx_free_vcpu(vcpu); ++ free_loaded_vmcs(vmx->loaded_vmcs); ++ kvm_vcpu_uninit(vcpu); ++ kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu); ++ kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu); ++ kmem_cache_free(kvm_vcpu_cache, vmx); ++} ++ ++static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id) ++{ ++ int err; ++ struct vcpu_vmx *vmx; ++ unsigned long *msr_bitmap; ++ int i, cpu; ++ ++ BUILD_BUG_ON_MSG(offsetof(struct vcpu_vmx, vcpu) != 0, ++ "struct kvm_vcpu must be at offset 0 for arch usercopy region"); ++ ++ vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); ++ if (!vmx) ++ return ERR_PTR(-ENOMEM); ++ ++ vmx->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache, ++ GFP_KERNEL_ACCOUNT); ++ if (!vmx->vcpu.arch.user_fpu) { ++ printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n"); ++ err = -ENOMEM; ++ goto free_partial_vcpu; ++ } ++ ++ vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, ++ GFP_KERNEL_ACCOUNT); ++ if (!vmx->vcpu.arch.guest_fpu) { ++ printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n"); ++ err = -ENOMEM; ++ goto free_user_fpu; ++ } ++ ++ vmx->vpid = allocate_vpid(); ++ ++ err = kvm_vcpu_init(&vmx->vcpu, kvm, id); ++ if (err) ++ goto free_vcpu; ++ ++ err = -ENOMEM; ++ ++ /* ++ * If PML is turned on, failure on enabling PML just results in failure ++ * of creating the vcpu, therefore we can simplify PML logic (by ++ * avoiding dealing with cases, such as enabling PML partially on vcpus ++ * for the guest), etc. ++ */ ++ if (enable_pml) { ++ vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); ++ if (!vmx->pml_pg) ++ goto uninit_vcpu; ++ } ++ ++ BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) != NR_SHARED_MSRS); ++ ++ for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) { ++ u32 index = vmx_msr_index[i]; ++ u32 data_low, data_high; ++ int j = vmx->nmsrs; ++ ++ if (rdmsr_safe(index, &data_low, &data_high) < 0) ++ continue; ++ if (wrmsr_safe(index, data_low, data_high) < 0) ++ continue; ++ ++ vmx->guest_msrs[j].index = i; ++ vmx->guest_msrs[j].data = 0; ++ switch (index) { ++ case MSR_IA32_TSX_CTRL: ++ /* ++ * No need to pass TSX_CTRL_CPUID_CLEAR through, so ++ * let's avoid changing CPUID bits under the host ++ * kernel's feet. ++ */ ++ vmx->guest_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR; ++ break; ++ default: ++ vmx->guest_msrs[j].mask = -1ull; ++ break; ++ } ++ ++vmx->nmsrs; ++ } ++ ++ err = alloc_loaded_vmcs(&vmx->vmcs01); ++ if (err < 0) ++ goto free_pml; ++ ++ msr_bitmap = vmx->vmcs01.msr_bitmap; ++ vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R); ++ vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW); ++ vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW); ++ vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); ++ vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); ++ vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); ++ vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); ++ if (kvm_cstate_in_guest(kvm)) { ++ vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R); ++ vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); ++ vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); ++ vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); ++ } ++ vmx->msr_bitmap_mode = 0; ++ ++ vmx->loaded_vmcs = &vmx->vmcs01; ++ cpu = get_cpu(); ++ vmx_vcpu_load(&vmx->vcpu, cpu); ++ vmx->vcpu.cpu = cpu; ++ init_vmcs(vmx); ++ vmx_vcpu_put(&vmx->vcpu); ++ put_cpu(); ++ if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) { ++ err = alloc_apic_access_page(kvm); ++ if (err) ++ goto free_vmcs; ++ } ++ ++ if (enable_ept && !enable_unrestricted_guest) { ++ err = init_rmode_identity_map(kvm); ++ if (err) ++ goto free_vmcs; ++ } ++ ++ if (nested) ++ nested_vmx_setup_ctls_msrs(&vmx->nested.msrs, ++ vmx_capability.ept, ++ kvm_vcpu_apicv_active(&vmx->vcpu)); ++ else ++ memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs)); ++ ++ vmx->nested.posted_intr_nv = -1; ++ vmx->nested.current_vmptr = -1ull; ++ ++ vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED; ++ ++ /* ++ * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR ++ * or POSTED_INTR_WAKEUP_VECTOR. ++ */ ++ vmx->pi_desc.nv = POSTED_INTR_VECTOR; ++ vmx->pi_desc.sn = 1; ++ ++ vmx->ept_pointer = INVALID_PAGE; ++ ++ return &vmx->vcpu; ++ ++free_vmcs: ++ free_loaded_vmcs(vmx->loaded_vmcs); ++free_pml: ++ vmx_destroy_pml_buffer(vmx); ++uninit_vcpu: ++ kvm_vcpu_uninit(&vmx->vcpu); ++free_vcpu: ++ free_vpid(vmx->vpid); ++ kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu); ++free_user_fpu: ++ kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu); ++free_partial_vcpu: ++ kmem_cache_free(kvm_vcpu_cache, vmx); ++ return ERR_PTR(err); ++} ++ ++#define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" ++#define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" ++ ++static int vmx_vm_init(struct kvm *kvm) ++{ ++ spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock); ++ ++ if (!ple_gap) ++ kvm->arch.pause_in_guest = true; ++ ++ if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { ++ switch (l1tf_mitigation) { ++ case L1TF_MITIGATION_OFF: ++ case L1TF_MITIGATION_FLUSH_NOWARN: ++ /* 'I explicitly don't care' is set */ ++ break; ++ case L1TF_MITIGATION_FLUSH: ++ case L1TF_MITIGATION_FLUSH_NOSMT: ++ case L1TF_MITIGATION_FULL: ++ /* ++ * Warn upon starting the first VM in a potentially ++ * insecure environment. ++ */ ++ if (sched_smt_active()) ++ pr_warn_once(L1TF_MSG_SMT); ++ if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) ++ pr_warn_once(L1TF_MSG_L1D); ++ break; ++ case L1TF_MITIGATION_FULL_FORCE: ++ /* Flush is enforced */ ++ break; ++ } ++ } ++ return 0; ++} ++ ++static int __init vmx_check_processor_compat(void) ++{ ++ struct vmcs_config vmcs_conf; ++ struct vmx_capability vmx_cap; ++ ++ if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) ++ return -EIO; ++ if (nested) ++ nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept, ++ enable_apicv); ++ if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { ++ printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", ++ smp_processor_id()); ++ return -EIO; ++ } ++ return 0; ++} ++ ++static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) ++{ ++ u8 cache; ++ u64 ipat = 0; ++ ++ /* For VT-d and EPT combination ++ * 1. MMIO: always map as UC ++ * 2. EPT with VT-d: ++ * a. VT-d without snooping control feature: can't guarantee the ++ * result, try to trust guest. ++ * b. VT-d with snooping control feature: snooping control feature of ++ * VT-d engine can guarantee the cache correctness. Just set it ++ * to WB to keep consistent with host. So the same as item 3. ++ * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep ++ * consistent with host MTRR ++ */ ++ if (is_mmio) { ++ cache = MTRR_TYPE_UNCACHABLE; ++ goto exit; ++ } ++ ++ if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) { ++ ipat = VMX_EPT_IPAT_BIT; ++ cache = MTRR_TYPE_WRBACK; ++ goto exit; ++ } ++ ++ if (kvm_read_cr0(vcpu) & X86_CR0_CD) { ++ ipat = VMX_EPT_IPAT_BIT; ++ if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) ++ cache = MTRR_TYPE_WRBACK; ++ else ++ cache = MTRR_TYPE_UNCACHABLE; ++ goto exit; ++ } ++ ++ cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn); ++ ++exit: ++ return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat; ++} ++ ++static int vmx_get_lpage_level(void) ++{ ++ if (enable_ept && !cpu_has_vmx_ept_1g_page()) ++ return PT_DIRECTORY_LEVEL; ++ else ++ /* For shadow and EPT supported 1GB page */ ++ return PT_PDPE_LEVEL; ++} ++ ++static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx) ++{ ++ /* ++ * These bits in the secondary execution controls field ++ * are dynamic, the others are mostly based on the hypervisor ++ * architecture and the guest's CPUID. Do not touch the ++ * dynamic bits. ++ */ ++ u32 mask = ++ SECONDARY_EXEC_SHADOW_VMCS | ++ SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | ++ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | ++ SECONDARY_EXEC_DESC; ++ ++ u32 new_ctl = vmx->secondary_exec_control; ++ u32 cur_ctl = secondary_exec_controls_get(vmx); ++ ++ secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); ++} ++ ++/* ++ * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits ++ * (indicating "allowed-1") if they are supported in the guest's CPUID. ++ */ ++static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ struct kvm_cpuid_entry2 *entry; ++ ++ vmx->nested.msrs.cr0_fixed1 = 0xffffffff; ++ vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; ++ ++#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ ++ if (entry && (entry->_reg & (_cpuid_mask))) \ ++ vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ ++} while (0) ++ ++ entry = kvm_find_cpuid_entry(vcpu, 0x1, 0); ++ cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME)); ++ cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME)); ++ cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC)); ++ cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE)); ++ cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE)); ++ cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE)); ++ cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE)); ++ cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE)); ++ cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR)); ++ cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM)); ++ cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX)); ++ cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX)); ++ cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID)); ++ cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE)); ++ ++ entry = kvm_find_cpuid_entry(vcpu, 0x7, 0); ++ cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE)); ++ cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP)); ++ cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP)); ++ cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU)); ++ cr4_fixed1_update(X86_CR4_UMIP, ecx, bit(X86_FEATURE_UMIP)); ++ cr4_fixed1_update(X86_CR4_LA57, ecx, bit(X86_FEATURE_LA57)); ++ ++#undef cr4_fixed1_update ++} ++ ++static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ ++ if (kvm_mpx_supported()) { ++ bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX); ++ ++ if (mpx_enabled) { ++ vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; ++ vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; ++ } else { ++ vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS; ++ vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS; ++ } ++ } ++} ++ ++static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ struct kvm_cpuid_entry2 *best = NULL; ++ int i; ++ ++ for (i = 0; i < PT_CPUID_LEAVES; i++) { ++ best = kvm_find_cpuid_entry(vcpu, 0x14, i); ++ if (!best) ++ return; ++ vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; ++ vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; ++ vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; ++ vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; ++ } ++ ++ /* Get the number of configurable Address Ranges for filtering */ ++ vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps, ++ PT_CAP_num_address_ranges); ++ ++ /* Initialize and clear the no dependency bits */ ++ vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | ++ RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC); ++ ++ /* ++ * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise ++ * will inject an #GP ++ */ ++ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) ++ vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; ++ ++ /* ++ * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and ++ * PSBFreq can be set ++ */ ++ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) ++ vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | ++ RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); ++ ++ /* ++ * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and ++ * MTCFreq can be set ++ */ ++ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) ++ vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | ++ RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE); ++ ++ /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ ++ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) ++ vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | ++ RTIT_CTL_PTW_EN); ++ ++ /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ ++ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) ++ vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; ++ ++ /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ ++ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) ++ vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; ++ ++ /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */ ++ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) ++ vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; ++ ++ /* unmask address range configure area */ ++ for (i = 0; i < vmx->pt_desc.addr_range; i++) ++ vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); ++} ++ ++static void vmx_cpuid_update(struct kvm_vcpu *vcpu) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ ++ /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */ ++ vcpu->arch.xsaves_enabled = false; ++ ++ if (cpu_has_secondary_exec_ctrls()) { ++ vmx_compute_secondary_exec_control(vmx); ++ vmcs_set_secondary_exec_control(vmx); ++ } ++ ++ if (nested_vmx_allowed(vcpu)) ++ to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= ++ FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX | ++ FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; ++ else ++ to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= ++ ~(FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX | ++ FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX); ++ ++ if (nested_vmx_allowed(vcpu)) { ++ nested_vmx_cr_fixed1_bits_update(vcpu); ++ nested_vmx_entry_exit_ctls_update(vcpu); ++ } ++ ++ if (boot_cpu_has(X86_FEATURE_INTEL_PT) && ++ guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) ++ update_intel_pt_cfg(vcpu); ++ ++ if (boot_cpu_has(X86_FEATURE_RTM)) { ++ struct shared_msr_entry *msr; ++ msr = find_msr_entry(vmx, MSR_IA32_TSX_CTRL); ++ if (msr) { ++ bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); ++ vmx_set_guest_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); ++ } ++ } ++} ++ ++static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry) ++{ ++ if (func == 1 && nested) ++ entry->ecx |= bit(X86_FEATURE_VMX); ++} ++ ++static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) ++{ ++ to_vmx(vcpu)->req_immediate_exit = true; ++} ++ ++static int vmx_check_intercept(struct kvm_vcpu *vcpu, ++ struct x86_instruction_info *info, ++ enum x86_intercept_stage stage) ++{ ++ struct vmcs12 *vmcs12 = get_vmcs12(vcpu); ++ struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; ++ ++ /* ++ * RDPID causes #UD if disabled through secondary execution controls. ++ * Because it is marked as EmulateOnUD, we need to intercept it here. ++ */ ++ if (info->intercept == x86_intercept_rdtscp && ++ !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) { ++ ctxt->exception.vector = UD_VECTOR; ++ ctxt->exception.error_code_valid = false; ++ return X86EMUL_PROPAGATE_FAULT; ++ } ++ ++ /* TODO: check more intercepts... */ ++ return X86EMUL_CONTINUE; ++} ++ ++#ifdef CONFIG_X86_64 ++/* (a << shift) / divisor, return 1 if overflow otherwise 0 */ ++static inline int u64_shl_div_u64(u64 a, unsigned int shift, ++ u64 divisor, u64 *result) ++{ ++ u64 low = a << shift, high = a >> (64 - shift); ++ ++ /* To avoid the overflow on divq */ ++ if (high >= divisor) ++ return 1; ++ ++ /* Low hold the result, high hold rem which is discarded */ ++ asm("divq %2\n\t" : "=a" (low), "=d" (high) : ++ "rm" (divisor), "0" (low), "1" (high)); ++ *result = low; ++ ++ return 0; ++} ++ ++static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, ++ bool *expired) ++{ ++ struct vcpu_vmx *vmx; ++ u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; ++ struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; ++ ++ if (kvm_mwait_in_guest(vcpu->kvm) || ++ kvm_can_post_timer_interrupt(vcpu)) ++ return -EOPNOTSUPP; ++ ++ vmx = to_vmx(vcpu); ++ tscl = rdtsc(); ++ guest_tscl = kvm_read_l1_tsc(vcpu, tscl); ++ delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; ++ lapic_timer_advance_cycles = nsec_to_cycles(vcpu, ++ ktimer->timer_advance_ns); ++ ++ if (delta_tsc > lapic_timer_advance_cycles) ++ delta_tsc -= lapic_timer_advance_cycles; ++ else ++ delta_tsc = 0; ++ ++ /* Convert to host delta tsc if tsc scaling is enabled */ ++ if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio && ++ delta_tsc && u64_shl_div_u64(delta_tsc, ++ kvm_tsc_scaling_ratio_frac_bits, ++ vcpu->arch.tsc_scaling_ratio, &delta_tsc)) ++ return -ERANGE; ++ ++ /* ++ * If the delta tsc can't fit in the 32 bit after the multi shift, ++ * we can't use the preemption timer. ++ * It's possible that it fits on later vmentries, but checking ++ * on every vmentry is costly so we just use an hrtimer. ++ */ ++ if (delta_tsc >> (cpu_preemption_timer_multi + 32)) ++ return -ERANGE; ++ ++ vmx->hv_deadline_tsc = tscl + delta_tsc; ++ *expired = !delta_tsc; ++ return 0; ++} ++ ++static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) ++{ ++ to_vmx(vcpu)->hv_deadline_tsc = -1; ++} ++#endif ++ ++static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) ++{ ++ if (!kvm_pause_in_guest(vcpu->kvm)) ++ shrink_ple_window(vcpu); ++} ++ ++static void vmx_slot_enable_log_dirty(struct kvm *kvm, ++ struct kvm_memory_slot *slot) ++{ ++ kvm_mmu_slot_leaf_clear_dirty(kvm, slot); ++ kvm_mmu_slot_largepage_remove_write_access(kvm, slot); ++} ++ ++static void vmx_slot_disable_log_dirty(struct kvm *kvm, ++ struct kvm_memory_slot *slot) ++{ ++ kvm_mmu_slot_set_dirty(kvm, slot); ++} ++ ++static void vmx_flush_log_dirty(struct kvm *kvm) ++{ ++ kvm_flush_pml_buffers(kvm); ++} ++ ++static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu) ++{ ++ struct vmcs12 *vmcs12; ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ gpa_t gpa, dst; ++ ++ if (is_guest_mode(vcpu)) { ++ WARN_ON_ONCE(vmx->nested.pml_full); ++ ++ /* ++ * Check if PML is enabled for the nested guest. ++ * Whether eptp bit 6 is set is already checked ++ * as part of A/D emulation. ++ */ ++ vmcs12 = get_vmcs12(vcpu); ++ if (!nested_cpu_has_pml(vmcs12)) ++ return 0; ++ ++ if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) { ++ vmx->nested.pml_full = true; ++ return 1; ++ } ++ ++ gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull; ++ dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index; ++ ++ if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa, ++ offset_in_page(dst), sizeof(gpa))) ++ return 0; ++ ++ vmcs12->guest_pml_index--; ++ } ++ ++ return 0; ++} ++ ++static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm, ++ struct kvm_memory_slot *memslot, ++ gfn_t offset, unsigned long mask) ++{ ++ kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask); ++} ++ ++static void __pi_post_block(struct kvm_vcpu *vcpu) ++{ ++ struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); ++ struct pi_desc old, new; ++ unsigned int dest; ++ ++ do { ++ old.control = new.control = pi_desc->control; ++ WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR, ++ "Wakeup handler not enabled while the VCPU is blocked\n"); ++ ++ dest = cpu_physical_id(vcpu->cpu); ++ ++ if (x2apic_enabled()) ++ new.ndst = dest; ++ else ++ new.ndst = (dest << 8) & 0xFF00; ++ ++ /* set 'NV' to 'notification vector' */ ++ new.nv = POSTED_INTR_VECTOR; ++ } while (cmpxchg64(&pi_desc->control, old.control, ++ new.control) != old.control); ++ ++ if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) { ++ spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); ++ list_del(&vcpu->blocked_vcpu_list); ++ spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); ++ vcpu->pre_pcpu = -1; ++ } ++} ++ ++/* ++ * This routine does the following things for vCPU which is going ++ * to be blocked if VT-d PI is enabled. ++ * - Store the vCPU to the wakeup list, so when interrupts happen ++ * we can find the right vCPU to wake up. ++ * - Change the Posted-interrupt descriptor as below: ++ * 'NDST' <-- vcpu->pre_pcpu ++ * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR ++ * - If 'ON' is set during this process, which means at least one ++ * interrupt is posted for this vCPU, we cannot block it, in ++ * this case, return 1, otherwise, return 0. ++ * ++ */ ++static int pi_pre_block(struct kvm_vcpu *vcpu) ++{ ++ unsigned int dest; ++ struct pi_desc old, new; ++ struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); ++ ++ if (!kvm_arch_has_assigned_device(vcpu->kvm) || ++ !irq_remapping_cap(IRQ_POSTING_CAP) || ++ !kvm_vcpu_apicv_active(vcpu)) ++ return 0; ++ ++ WARN_ON(irqs_disabled()); ++ local_irq_disable(); ++ if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) { ++ vcpu->pre_pcpu = vcpu->cpu; ++ spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); ++ list_add_tail(&vcpu->blocked_vcpu_list, ++ &per_cpu(blocked_vcpu_on_cpu, ++ vcpu->pre_pcpu)); ++ spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); ++ } ++ ++ do { ++ old.control = new.control = pi_desc->control; ++ ++ WARN((pi_desc->sn == 1), ++ "Warning: SN field of posted-interrupts " ++ "is set before blocking\n"); ++ ++ /* ++ * Since vCPU can be preempted during this process, ++ * vcpu->cpu could be different with pre_pcpu, we ++ * need to set pre_pcpu as the destination of wakeup ++ * notification event, then we can find the right vCPU ++ * to wakeup in wakeup handler if interrupts happen ++ * when the vCPU is in blocked state. ++ */ ++ dest = cpu_physical_id(vcpu->pre_pcpu); ++ ++ if (x2apic_enabled()) ++ new.ndst = dest; ++ else ++ new.ndst = (dest << 8) & 0xFF00; ++ ++ /* set 'NV' to 'wakeup vector' */ ++ new.nv = POSTED_INTR_WAKEUP_VECTOR; ++ } while (cmpxchg64(&pi_desc->control, old.control, ++ new.control) != old.control); ++ ++ /* We should not block the vCPU if an interrupt is posted for it. */ ++ if (pi_test_on(pi_desc) == 1) ++ __pi_post_block(vcpu); ++ ++ local_irq_enable(); ++ return (vcpu->pre_pcpu == -1); ++} ++ ++static int vmx_pre_block(struct kvm_vcpu *vcpu) ++{ ++ if (pi_pre_block(vcpu)) ++ return 1; ++ ++ if (kvm_lapic_hv_timer_in_use(vcpu)) ++ kvm_lapic_switch_to_sw_timer(vcpu); ++ ++ return 0; ++} ++ ++static void pi_post_block(struct kvm_vcpu *vcpu) ++{ ++ if (vcpu->pre_pcpu == -1) ++ return; ++ ++ WARN_ON(irqs_disabled()); ++ local_irq_disable(); ++ __pi_post_block(vcpu); ++ local_irq_enable(); ++} ++ ++static void vmx_post_block(struct kvm_vcpu *vcpu) ++{ ++ if (kvm_x86_ops->set_hv_timer) ++ kvm_lapic_switch_to_hv_timer(vcpu); ++ ++ pi_post_block(vcpu); ++} ++ ++/* ++ * vmx_update_pi_irte - set IRTE for Posted-Interrupts ++ * ++ * @kvm: kvm ++ * @host_irq: host irq of the interrupt ++ * @guest_irq: gsi of the interrupt ++ * @set: set or unset PI ++ * returns 0 on success, < 0 on failure ++ */ ++static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq, ++ uint32_t guest_irq, bool set) ++{ ++ struct kvm_kernel_irq_routing_entry *e; ++ struct kvm_irq_routing_table *irq_rt; ++ struct kvm_lapic_irq irq; ++ struct kvm_vcpu *vcpu; ++ struct vcpu_data vcpu_info; ++ int idx, ret = 0; ++ ++ if (!kvm_arch_has_assigned_device(kvm) || ++ !irq_remapping_cap(IRQ_POSTING_CAP) || ++ !kvm_vcpu_apicv_active(kvm->vcpus[0])) ++ return 0; ++ ++ idx = srcu_read_lock(&kvm->irq_srcu); ++ irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu); ++ if (guest_irq >= irq_rt->nr_rt_entries || ++ hlist_empty(&irq_rt->map[guest_irq])) { ++ pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n", ++ guest_irq, irq_rt->nr_rt_entries); ++ goto out; ++ } ++ ++ hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) { ++ if (e->type != KVM_IRQ_ROUTING_MSI) ++ continue; ++ /* ++ * VT-d PI cannot support posting multicast/broadcast ++ * interrupts to a vCPU, we still use interrupt remapping ++ * for these kind of interrupts. ++ * ++ * For lowest-priority interrupts, we only support ++ * those with single CPU as the destination, e.g. user ++ * configures the interrupts via /proc/irq or uses ++ * irqbalance to make the interrupts single-CPU. ++ * ++ * We will support full lowest-priority interrupt later. ++ * ++ * In addition, we can only inject generic interrupts using ++ * the PI mechanism, refuse to route others through it. ++ */ ++ ++ kvm_set_msi_irq(kvm, e, &irq); ++ if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) || ++ !kvm_irq_is_postable(&irq)) { ++ /* ++ * Make sure the IRTE is in remapped mode if ++ * we don't handle it in posted mode. ++ */ ++ ret = irq_set_vcpu_affinity(host_irq, NULL); ++ if (ret < 0) { ++ printk(KERN_INFO ++ "failed to back to remapped mode, irq: %u\n", ++ host_irq); ++ goto out; ++ } ++ ++ continue; ++ } ++ ++ vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu)); ++ vcpu_info.vector = irq.vector; ++ ++ trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi, ++ vcpu_info.vector, vcpu_info.pi_desc_addr, set); ++ ++ if (set) ++ ret = irq_set_vcpu_affinity(host_irq, &vcpu_info); ++ else ++ ret = irq_set_vcpu_affinity(host_irq, NULL); ++ ++ if (ret < 0) { ++ printk(KERN_INFO "%s: failed to update PI IRTE\n", ++ __func__); ++ goto out; ++ } ++ } ++ ++ ret = 0; ++out: ++ srcu_read_unlock(&kvm->irq_srcu, idx); ++ return ret; ++} ++ ++static void vmx_setup_mce(struct kvm_vcpu *vcpu) ++{ ++ if (vcpu->arch.mcg_cap & MCG_LMCE_P) ++ to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= ++ FEATURE_CONTROL_LMCE; ++ else ++ to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= ++ ~FEATURE_CONTROL_LMCE; ++} ++ ++static int vmx_smi_allowed(struct kvm_vcpu *vcpu) ++{ ++ /* we need a nested vmexit to enter SMM, postpone if run is pending */ ++ if (to_vmx(vcpu)->nested.nested_run_pending) ++ return 0; ++ return 1; ++} ++ ++static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ ++ vmx->nested.smm.guest_mode = is_guest_mode(vcpu); ++ if (vmx->nested.smm.guest_mode) ++ nested_vmx_vmexit(vcpu, -1, 0, 0); ++ ++ vmx->nested.smm.vmxon = vmx->nested.vmxon; ++ vmx->nested.vmxon = false; ++ vmx_clear_hlt(vcpu); ++ return 0; ++} ++ ++static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) ++{ ++ struct vcpu_vmx *vmx = to_vmx(vcpu); ++ int ret; ++ ++ if (vmx->nested.smm.vmxon) { ++ vmx->nested.vmxon = true; ++ vmx->nested.smm.vmxon = false; ++ } ++ ++ if (vmx->nested.smm.guest_mode) { ++ ret = nested_vmx_enter_non_root_mode(vcpu, false); ++ if (ret) ++ return ret; ++ ++ vmx->nested.smm.guest_mode = false; ++ } ++ return 0; ++} ++ ++static int enable_smi_window(struct kvm_vcpu *vcpu) ++{ ++ return 0; ++} ++ ++static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu) ++{ ++ return false; ++} ++ ++static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) ++{ ++ return to_vmx(vcpu)->nested.vmxon; ++} ++ ++static __init int hardware_setup(void) ++{ ++ unsigned long host_bndcfgs; ++ struct desc_ptr dt; ++ int r, i; ++ ++ rdmsrl_safe(MSR_EFER, &host_efer); ++ ++ store_idt(&dt); ++ host_idt_base = dt.address; ++ ++ for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) ++ kvm_define_shared_msr(i, vmx_msr_index[i]); ++ ++ if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) ++ return -EIO; ++ ++ if (boot_cpu_has(X86_FEATURE_NX)) ++ kvm_enable_efer_bits(EFER_NX); ++ ++ if (boot_cpu_has(X86_FEATURE_MPX)) { ++ rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); ++ WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost"); ++ } ++ ++ if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || ++ !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) ++ enable_vpid = 0; ++ ++ if (!cpu_has_vmx_ept() || ++ !cpu_has_vmx_ept_4levels() || ++ !cpu_has_vmx_ept_mt_wb() || ++ !cpu_has_vmx_invept_global()) ++ enable_ept = 0; ++ ++ if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) ++ enable_ept_ad_bits = 0; ++ ++ if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) ++ enable_unrestricted_guest = 0; ++ ++ if (!cpu_has_vmx_flexpriority()) ++ flexpriority_enabled = 0; ++ ++ if (!cpu_has_virtual_nmis()) ++ enable_vnmi = 0; ++ ++ /* ++ * set_apic_access_page_addr() is used to reload apic access ++ * page upon invalidation. No need to do anything if not ++ * using the APIC_ACCESS_ADDR VMCS field. ++ */ ++ if (!flexpriority_enabled) ++ kvm_x86_ops->set_apic_access_page_addr = NULL; ++ ++ if (!cpu_has_vmx_tpr_shadow()) ++ kvm_x86_ops->update_cr8_intercept = NULL; ++ ++ if (enable_ept && !cpu_has_vmx_ept_2m_page()) ++ kvm_disable_largepages(); ++ ++#if IS_ENABLED(CONFIG_HYPERV) ++ if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH ++ && enable_ept) { ++ kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb; ++ kvm_x86_ops->tlb_remote_flush_with_range = ++ hv_remote_flush_tlb_with_range; ++ } ++#endif ++ ++ if (!cpu_has_vmx_ple()) { ++ ple_gap = 0; ++ ple_window = 0; ++ ple_window_grow = 0; ++ ple_window_max = 0; ++ ple_window_shrink = 0; ++ } ++ ++ if (!cpu_has_vmx_apicv()) { ++ enable_apicv = 0; ++ kvm_x86_ops->sync_pir_to_irr = NULL; ++ } ++ ++ if (cpu_has_vmx_tsc_scaling()) { ++ kvm_has_tsc_control = true; ++ kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; ++ kvm_tsc_scaling_ratio_frac_bits = 48; ++ } ++ ++ set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ ++ ++ if (enable_ept) ++ vmx_enable_tdp(); ++ else ++ kvm_disable_tdp(); ++ ++ /* ++ * Only enable PML when hardware supports PML feature, and both EPT ++ * and EPT A/D bit features are enabled -- PML depends on them to work. ++ */ ++ if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) ++ enable_pml = 0; ++ ++ if (!enable_pml) { ++ kvm_x86_ops->slot_enable_log_dirty = NULL; ++ kvm_x86_ops->slot_disable_log_dirty = NULL; ++ kvm_x86_ops->flush_log_dirty = NULL; ++ kvm_x86_ops->enable_log_dirty_pt_masked = NULL; ++ } ++ ++ if (!cpu_has_vmx_preemption_timer()) ++ enable_preemption_timer = false; ++ ++ if (enable_preemption_timer) { ++ u64 use_timer_freq = 5000ULL * 1000 * 1000; ++ u64 vmx_msr; ++ ++ rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); ++ cpu_preemption_timer_multi = ++ vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; ++ ++ if (tsc_khz) ++ use_timer_freq = (u64)tsc_khz * 1000; ++ use_timer_freq >>= cpu_preemption_timer_multi; ++ ++ /* ++ * KVM "disables" the preemption timer by setting it to its max ++ * value. Don't use the timer if it might cause spurious exits ++ * at a rate faster than 0.1 Hz (of uninterrupted guest time). ++ */ ++ if (use_timer_freq > 0xffffffffu / 10) ++ enable_preemption_timer = false; ++ } ++ ++ if (!enable_preemption_timer) { ++ kvm_x86_ops->set_hv_timer = NULL; ++ kvm_x86_ops->cancel_hv_timer = NULL; ++ kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit; ++ } ++ ++ kvm_set_posted_intr_wakeup_handler(wakeup_handler); ++ ++ kvm_mce_cap_supported |= MCG_LMCE_P; ++ ++ if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) ++ return -EINVAL; ++ if (!enable_ept || !cpu_has_vmx_intel_pt()) ++ pt_mode = PT_MODE_SYSTEM; ++ ++ if (nested) { ++ nested_vmx_setup_ctls_msrs(&vmcs_config.nested, ++ vmx_capability.ept, enable_apicv); ++ ++ r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); ++ if (r) ++ return r; ++ } ++ ++ r = alloc_kvm_area(); ++ if (r) ++ nested_vmx_hardware_unsetup(); ++ return r; ++} ++ ++static __exit void hardware_unsetup(void) ++{ ++ if (nested) ++ nested_vmx_hardware_unsetup(); ++ ++ free_kvm_area(); ++} ++ ++static struct kvm_x86_ops vmx_x86_ops __ro_after_init = { ++ .cpu_has_kvm_support = cpu_has_kvm_support, ++ .disabled_by_bios = vmx_disabled_by_bios, ++ .hardware_setup = hardware_setup, ++ .hardware_unsetup = hardware_unsetup, ++ .check_processor_compatibility = vmx_check_processor_compat, ++ .hardware_enable = hardware_enable, ++ .hardware_disable = hardware_disable, ++ .cpu_has_accelerated_tpr = report_flexpriority, ++ .has_emulated_msr = vmx_has_emulated_msr, ++ ++ .vm_init = vmx_vm_init, ++ .vm_alloc = vmx_vm_alloc, ++ .vm_free = vmx_vm_free, ++ ++ .vcpu_create = vmx_create_vcpu, ++ .vcpu_free = vmx_free_vcpu, ++ .vcpu_reset = vmx_vcpu_reset, ++ ++ .prepare_guest_switch = vmx_prepare_switch_to_guest, ++ .vcpu_load = vmx_vcpu_load, ++ .vcpu_put = vmx_vcpu_put, ++ ++ .update_bp_intercept = update_exception_bitmap, ++ .get_msr_feature = vmx_get_msr_feature, ++ .get_msr = vmx_get_msr, ++ .set_msr = vmx_set_msr, ++ .get_segment_base = vmx_get_segment_base, ++ .get_segment = vmx_get_segment, ++ .set_segment = vmx_set_segment, ++ .get_cpl = vmx_get_cpl, ++ .get_cs_db_l_bits = vmx_get_cs_db_l_bits, ++ .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits, ++ .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits, ++ .set_cr0 = vmx_set_cr0, ++ .set_cr3 = vmx_set_cr3, ++ .set_cr4 = vmx_set_cr4, ++ .set_efer = vmx_set_efer, ++ .get_idt = vmx_get_idt, ++ .set_idt = vmx_set_idt, ++ .get_gdt = vmx_get_gdt, ++ .set_gdt = vmx_set_gdt, ++ .get_dr6 = vmx_get_dr6, ++ .set_dr6 = vmx_set_dr6, ++ .set_dr7 = vmx_set_dr7, ++ .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, ++ .cache_reg = vmx_cache_reg, ++ .get_rflags = vmx_get_rflags, ++ .set_rflags = vmx_set_rflags, ++ ++ .tlb_flush = vmx_flush_tlb, ++ .tlb_flush_gva = vmx_flush_tlb_gva, ++ ++ .run = vmx_vcpu_run, ++ .handle_exit = vmx_handle_exit, ++ .skip_emulated_instruction = skip_emulated_instruction, ++ .set_interrupt_shadow = vmx_set_interrupt_shadow, ++ .get_interrupt_shadow = vmx_get_interrupt_shadow, ++ .patch_hypercall = vmx_patch_hypercall, ++ .set_irq = vmx_inject_irq, ++ .set_nmi = vmx_inject_nmi, ++ .queue_exception = vmx_queue_exception, ++ .cancel_injection = vmx_cancel_injection, ++ .interrupt_allowed = vmx_interrupt_allowed, ++ .nmi_allowed = vmx_nmi_allowed, ++ .get_nmi_mask = vmx_get_nmi_mask, ++ .set_nmi_mask = vmx_set_nmi_mask, ++ .enable_nmi_window = enable_nmi_window, ++ .enable_irq_window = enable_irq_window, ++ .update_cr8_intercept = update_cr8_intercept, ++ .set_virtual_apic_mode = vmx_set_virtual_apic_mode, ++ .set_apic_access_page_addr = vmx_set_apic_access_page_addr, ++ .get_enable_apicv = vmx_get_enable_apicv, ++ .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, ++ .load_eoi_exitmap = vmx_load_eoi_exitmap, ++ .apicv_post_state_restore = vmx_apicv_post_state_restore, ++ .hwapic_irr_update = vmx_hwapic_irr_update, ++ .hwapic_isr_update = vmx_hwapic_isr_update, ++ .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, ++ .sync_pir_to_irr = vmx_sync_pir_to_irr, ++ .deliver_posted_interrupt = vmx_deliver_posted_interrupt, ++ .dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt, ++ ++ .set_tss_addr = vmx_set_tss_addr, ++ .set_identity_map_addr = vmx_set_identity_map_addr, ++ .get_tdp_level = get_ept_level, ++ .get_mt_mask = vmx_get_mt_mask, ++ ++ .get_exit_info = vmx_get_exit_info, ++ ++ .get_lpage_level = vmx_get_lpage_level, ++ ++ .cpuid_update = vmx_cpuid_update, ++ ++ .rdtscp_supported = vmx_rdtscp_supported, ++ .invpcid_supported = vmx_invpcid_supported, ++ ++ .set_supported_cpuid = vmx_set_supported_cpuid, ++ ++ .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, ++ ++ .read_l1_tsc_offset = vmx_read_l1_tsc_offset, ++ .write_l1_tsc_offset = vmx_write_l1_tsc_offset, ++ ++ .set_tdp_cr3 = vmx_set_cr3, ++ ++ .check_intercept = vmx_check_intercept, ++ .handle_exit_irqoff = vmx_handle_exit_irqoff, ++ .mpx_supported = vmx_mpx_supported, ++ .xsaves_supported = vmx_xsaves_supported, ++ .umip_emulated = vmx_umip_emulated, ++ .pt_supported = vmx_pt_supported, ++ ++ .request_immediate_exit = vmx_request_immediate_exit, ++ ++ .sched_in = vmx_sched_in, ++ ++ .slot_enable_log_dirty = vmx_slot_enable_log_dirty, ++ .slot_disable_log_dirty = vmx_slot_disable_log_dirty, ++ .flush_log_dirty = vmx_flush_log_dirty, ++ .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked, ++ .write_log_dirty = vmx_write_pml_buffer, ++ ++ .pre_block = vmx_pre_block, ++ .post_block = vmx_post_block, ++ ++ .pmu_ops = &intel_pmu_ops, ++ ++ .update_pi_irte = vmx_update_pi_irte, ++ ++#ifdef CONFIG_X86_64 ++ .set_hv_timer = vmx_set_hv_timer, ++ .cancel_hv_timer = vmx_cancel_hv_timer, ++#endif ++ ++ .setup_mce = vmx_setup_mce, ++ ++ .smi_allowed = vmx_smi_allowed, ++ .pre_enter_smm = vmx_pre_enter_smm, ++ .pre_leave_smm = vmx_pre_leave_smm, ++ .enable_smi_window = enable_smi_window, ++ ++ .check_nested_events = NULL, ++ .get_nested_state = NULL, ++ .set_nested_state = NULL, ++ .get_vmcs12_pages = NULL, ++ .nested_enable_evmcs = NULL, ++ .nested_get_evmcs_version = NULL, ++ .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault, ++ .apic_init_signal_blocked = vmx_apic_init_signal_blocked, ++}; ++ ++static void vmx_cleanup_l1d_flush(void) ++{ ++ if (vmx_l1d_flush_pages) { ++ free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); ++ vmx_l1d_flush_pages = NULL; ++ } ++ /* Restore state so sysfs ignores VMX */ ++ l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; ++} ++ ++static void vmx_exit(void) ++{ ++#ifdef CONFIG_KEXEC_CORE ++ RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); ++ synchronize_rcu(); ++#endif ++ ++ kvm_exit(); ++ ++#if IS_ENABLED(CONFIG_HYPERV) ++ if (static_branch_unlikely(&enable_evmcs)) { ++ int cpu; ++ struct hv_vp_assist_page *vp_ap; ++ /* ++ * Reset everything to support using non-enlightened VMCS ++ * access later (e.g. when we reload the module with ++ * enlightened_vmcs=0) ++ */ ++ for_each_online_cpu(cpu) { ++ vp_ap = hv_get_vp_assist_page(cpu); ++ ++ if (!vp_ap) ++ continue; ++ ++ vp_ap->nested_control.features.directhypercall = 0; ++ vp_ap->current_nested_vmcs = 0; ++ vp_ap->enlighten_vmentry = 0; ++ } ++ ++ static_branch_disable(&enable_evmcs); ++ } ++#endif ++ vmx_cleanup_l1d_flush(); ++} ++module_exit(vmx_exit); ++ ++static int __init vmx_init(void) ++{ ++ int r; ++ ++#if IS_ENABLED(CONFIG_HYPERV) ++ /* ++ * Enlightened VMCS usage should be recommended and the host needs ++ * to support eVMCS v1 or above. We can also disable eVMCS support ++ * with module parameter. ++ */ ++ if (enlightened_vmcs && ++ ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && ++ (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= ++ KVM_EVMCS_VERSION) { ++ int cpu; ++ ++ /* Check that we have assist pages on all online CPUs */ ++ for_each_online_cpu(cpu) { ++ if (!hv_get_vp_assist_page(cpu)) { ++ enlightened_vmcs = false; ++ break; ++ } ++ } ++ ++ if (enlightened_vmcs) { ++ pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n"); ++ static_branch_enable(&enable_evmcs); ++ } ++ ++ if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) ++ vmx_x86_ops.enable_direct_tlbflush ++ = hv_enable_direct_tlbflush; ++ ++ } else { ++ enlightened_vmcs = false; ++ } ++#endif ++ ++ r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), ++ __alignof__(struct vcpu_vmx), THIS_MODULE); ++ if (r) ++ return r; ++ ++ /* ++ * Must be called after kvm_init() so enable_ept is properly set ++ * up. Hand the parameter mitigation value in which was stored in ++ * the pre module init parser. If no parameter was given, it will ++ * contain 'auto' which will be turned into the default 'cond' ++ * mitigation mode. ++ */ ++ r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); ++ if (r) { ++ vmx_exit(); ++ return r; ++ } ++ ++#ifdef CONFIG_KEXEC_CORE ++ rcu_assign_pointer(crash_vmclear_loaded_vmcss, ++ crash_vmclear_local_loaded_vmcss); ++#endif ++ vmx_check_vmcs12_offsets(); ++ ++ return 0; ++} ++module_init(vmx_init); +diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c +index df7ccee4e3fd..21fb707546b6 100644 +--- a/arch/x86/kvm/x86.c ++++ b/arch/x86/kvm/x86.c +@@ -53,6 +53,7 @@ + #include <linux/pvclock_gtod.h> + #include <linux/kvm_irqfd.h> + #include <linux/irqbypass.h> ++#include <linux/nospec.h> + #include <trace/events/kvm.h> + + #define CREATE_TRACE_POINTS +@@ -873,9 +874,11 @@ static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) + + static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) + { ++ size_t size = ARRAY_SIZE(vcpu->arch.db); ++ + switch (dr) { + case 0 ... 3: +- vcpu->arch.db[dr] = val; ++ vcpu->arch.db[array_index_nospec(dr, size)] = val; + if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) + vcpu->arch.eff_db[dr] = val; + break; +@@ -912,9 +915,11 @@ EXPORT_SYMBOL_GPL(kvm_set_dr); + + int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) + { ++ size_t size = ARRAY_SIZE(vcpu->arch.db); ++ + switch (dr) { + case 0 ... 3: +- *val = vcpu->arch.db[dr]; ++ *val = vcpu->arch.db[array_index_nospec(dr, size)]; + break; + case 4: + /* fall through */ +@@ -1989,7 +1994,10 @@ static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) + default: + if (msr >= MSR_IA32_MC0_CTL && + msr < MSR_IA32_MCx_CTL(bank_num)) { +- u32 offset = msr - MSR_IA32_MC0_CTL; ++ u32 offset = array_index_nospec( ++ msr - MSR_IA32_MC0_CTL, ++ MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); ++ + /* only 0 or all 1s can be written to IA32_MCi_CTL + * some Linux kernels though clear bit 10 in bank 4 to + * workaround a BIOS/GART TBL issue on AMD K8s, ignore +@@ -2350,7 +2358,10 @@ static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) + default: + if (msr >= MSR_IA32_MC0_CTL && + msr < MSR_IA32_MCx_CTL(bank_num)) { +- u32 offset = msr - MSR_IA32_MC0_CTL; ++ u32 offset = array_index_nospec( ++ msr - MSR_IA32_MC0_CTL, ++ MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); ++ + data = vcpu->arch.mce_banks[offset]; + break; + } +@@ -5874,14 +5885,12 @@ static void kvm_set_mmio_spte_mask(void) + /* Set the present bit. */ + mask |= 1ull; + +-#ifdef CONFIG_X86_64 + /* + * If reserved bit is not supported, clear the present bit to disable + * mmio page fault. + */ + if (maxphyaddr == 52) + mask &= ~1ull; +-#endif + + kvm_mmu_set_mmio_spte_mask(mask); + } +@@ -7487,7 +7496,7 @@ void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) + kvm_mmu_unload(vcpu); + vcpu_put(vcpu); + +- kvm_x86_ops->vcpu_free(vcpu); ++ kvm_arch_vcpu_free(vcpu); + } + + void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) +diff --git a/crypto/algapi.c b/crypto/algapi.c +index eb58b73ca925..9d26d0125cd2 100644 +--- a/crypto/algapi.c ++++ b/crypto/algapi.c +@@ -653,11 +653,9 @@ EXPORT_SYMBOL_GPL(crypto_grab_spawn); + + void crypto_drop_spawn(struct crypto_spawn *spawn) + { +- if (!spawn->alg) +- return; +- + down_write(&crypto_alg_sem); +- list_del(&spawn->list); ++ if (spawn->alg) ++ list_del(&spawn->list); + up_write(&crypto_alg_sem); + } + EXPORT_SYMBOL_GPL(crypto_drop_spawn); +@@ -665,22 +663,16 @@ EXPORT_SYMBOL_GPL(crypto_drop_spawn); + static struct crypto_alg *crypto_spawn_alg(struct crypto_spawn *spawn) + { + struct crypto_alg *alg; +- struct crypto_alg *alg2; + + down_read(&crypto_alg_sem); + alg = spawn->alg; +- alg2 = alg; +- if (alg2) +- alg2 = crypto_mod_get(alg2); +- up_read(&crypto_alg_sem); +- +- if (!alg2) { +- if (alg) +- crypto_shoot_alg(alg); +- return ERR_PTR(-EAGAIN); ++ if (alg && !crypto_mod_get(alg)) { ++ alg->cra_flags |= CRYPTO_ALG_DYING; ++ alg = NULL; + } ++ up_read(&crypto_alg_sem); + +- return alg; ++ return alg ?: ERR_PTR(-EAGAIN); + } + + struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type, +diff --git a/crypto/api.c b/crypto/api.c +index bbc147cb5dec..e108f9d466b0 100644 +--- a/crypto/api.c ++++ b/crypto/api.c +@@ -355,13 +355,12 @@ static unsigned int crypto_ctxsize(struct crypto_alg *alg, u32 type, u32 mask) + return len; + } + +-void crypto_shoot_alg(struct crypto_alg *alg) ++static void crypto_shoot_alg(struct crypto_alg *alg) + { + down_write(&crypto_alg_sem); + alg->cra_flags |= CRYPTO_ALG_DYING; + up_write(&crypto_alg_sem); + } +-EXPORT_SYMBOL_GPL(crypto_shoot_alg); + + struct crypto_tfm *__crypto_alloc_tfm(struct crypto_alg *alg, u32 type, + u32 mask) +diff --git a/crypto/internal.h b/crypto/internal.h +index 00e42a3ed814..657578d0ad45 100644 +--- a/crypto/internal.h ++++ b/crypto/internal.h +@@ -87,7 +87,6 @@ void crypto_alg_tested(const char *name, int err); + void crypto_remove_spawns(struct crypto_alg *alg, struct list_head *list, + struct crypto_alg *nalg); + void crypto_remove_final(struct list_head *list); +-void crypto_shoot_alg(struct crypto_alg *alg); + struct crypto_tfm *__crypto_alloc_tfm(struct crypto_alg *alg, u32 type, + u32 mask); + void *crypto_create_tfm(struct crypto_alg *alg, +diff --git a/crypto/pcrypt.c b/crypto/pcrypt.c +index 1348541da463..85082574c515 100644 +--- a/crypto/pcrypt.c ++++ b/crypto/pcrypt.c +@@ -130,7 +130,6 @@ static void pcrypt_aead_done(struct crypto_async_request *areq, int err) + struct padata_priv *padata = pcrypt_request_padata(preq); + + padata->info = err; +- req->base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP; + + padata_do_serial(padata); + } +diff --git a/drivers/crypto/picoxcell_crypto.c b/drivers/crypto/picoxcell_crypto.c +index 615da961c4d8..02f61409770e 100644 +--- a/drivers/crypto/picoxcell_crypto.c ++++ b/drivers/crypto/picoxcell_crypto.c +@@ -1610,6 +1610,11 @@ static bool spacc_is_compatible(struct platform_device *pdev, + return false; + } + ++static void spacc_tasklet_kill(void *data) ++{ ++ tasklet_kill(data); ++} ++ + static int spacc_probe(struct platform_device *pdev) + { + int i, err, ret = -EINVAL; +@@ -1652,6 +1657,14 @@ static int spacc_probe(struct platform_device *pdev) + return -ENXIO; + } + ++ tasklet_init(&engine->complete, spacc_spacc_complete, ++ (unsigned long)engine); ++ ++ ret = devm_add_action(&pdev->dev, spacc_tasklet_kill, ++ &engine->complete); ++ if (ret) ++ return ret; ++ + if (devm_request_irq(&pdev->dev, irq->start, spacc_spacc_irq, 0, + engine->name, engine)) { + dev_err(engine->dev, "failed to request IRQ\n"); +@@ -1714,8 +1727,6 @@ static int spacc_probe(struct platform_device *pdev) + INIT_LIST_HEAD(&engine->completed); + INIT_LIST_HEAD(&engine->in_progress); + engine->in_flight = 0; +- tasklet_init(&engine->complete, spacc_spacc_complete, +- (unsigned long)engine); + + platform_set_drvdata(pdev, engine); + +diff --git a/drivers/gpu/drm/atmel-hlcdc/atmel_hlcdc_crtc.c b/drivers/gpu/drm/atmel-hlcdc/atmel_hlcdc_crtc.c +index 9f6e234e7029..eae9370225df 100644 +--- a/drivers/gpu/drm/atmel-hlcdc/atmel_hlcdc_crtc.c ++++ b/drivers/gpu/drm/atmel-hlcdc/atmel_hlcdc_crtc.c +@@ -63,7 +63,11 @@ static void atmel_hlcdc_crtc_mode_set_nofb(struct drm_crtc *c) + struct videomode vm; + unsigned long prate; + unsigned int cfg; +- int div; ++ int div, ret; ++ ++ ret = clk_prepare_enable(crtc->dc->hlcdc->sys_clk); ++ if (ret) ++ return; + + vm.vfront_porch = adj->crtc_vsync_start - adj->crtc_vdisplay; + vm.vback_porch = adj->crtc_vtotal - adj->crtc_vsync_end; +@@ -119,6 +123,8 @@ static void atmel_hlcdc_crtc_mode_set_nofb(struct drm_crtc *c) + ATMEL_HLCDC_VSPSU | ATMEL_HLCDC_VSPHO | + ATMEL_HLCDC_GUARDTIME_MASK, + cfg); ++ ++ clk_disable_unprepare(crtc->dc->hlcdc->sys_clk); + } + + static bool atmel_hlcdc_crtc_mode_fixup(struct drm_crtc *crtc, +diff --git a/drivers/md/dm.c b/drivers/md/dm.c +index c752c55f0bb2..c4d4cd38a58f 100644 +--- a/drivers/md/dm.c ++++ b/drivers/md/dm.c +@@ -2293,7 +2293,6 @@ static void dm_init_md_queue(struct mapped_device *md) + * - must do so here (in alloc_dev callchain) before queue is used + */ + md->queue->queuedata = md; +- md->queue->backing_dev_info.congested_data = md; + } + + static void dm_init_old_md_queue(struct mapped_device *md) +@@ -2304,6 +2303,7 @@ static void dm_init_old_md_queue(struct mapped_device *md) + /* + * Initialize aspects of queue that aren't relevant for blk-mq + */ ++ md->queue->backing_dev_info.congested_data = md; + md->queue->backing_dev_info.congested_fn = dm_any_congested; + blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); + } +@@ -2386,6 +2386,12 @@ static struct mapped_device *alloc_dev(int minor) + goto bad; + + dm_init_md_queue(md); ++ /* ++ * default to bio-based required ->make_request_fn until DM ++ * table is loaded and md->type established. If request-based ++ * table is loaded: blk-mq will override accordingly. ++ */ ++ blk_queue_make_request(md->queue, dm_make_request); + + md->disk = alloc_disk(1); + if (!md->disk) +@@ -2849,7 +2855,6 @@ int dm_setup_md_queue(struct mapped_device *md) + break; + case DM_TYPE_BIO_BASED: + dm_init_old_md_queue(md); +- blk_queue_make_request(md->queue, dm_make_request); + /* + * DM handles splitting bios as needed. Free the bio_split bioset + * since it won't be used (saves 1 process per bio-based DM device). +diff --git a/drivers/md/persistent-data/dm-space-map-common.c b/drivers/md/persistent-data/dm-space-map-common.c +index 306d2e4502c4..22729fd92a1b 100644 +--- a/drivers/md/persistent-data/dm-space-map-common.c ++++ b/drivers/md/persistent-data/dm-space-map-common.c +@@ -382,6 +382,33 @@ int sm_ll_find_free_block(struct ll_disk *ll, dm_block_t begin, + return -ENOSPC; + } + ++int sm_ll_find_common_free_block(struct ll_disk *old_ll, struct ll_disk *new_ll, ++ dm_block_t begin, dm_block_t end, dm_block_t *b) ++{ ++ int r; ++ uint32_t count; ++ ++ do { ++ r = sm_ll_find_free_block(new_ll, begin, new_ll->nr_blocks, b); ++ if (r) ++ break; ++ ++ /* double check this block wasn't used in the old transaction */ ++ if (*b >= old_ll->nr_blocks) ++ count = 0; ++ else { ++ r = sm_ll_lookup(old_ll, *b, &count); ++ if (r) ++ break; ++ ++ if (count) ++ begin = *b + 1; ++ } ++ } while (count); ++ ++ return r; ++} ++ + static int sm_ll_mutate(struct ll_disk *ll, dm_block_t b, + int (*mutator)(void *context, uint32_t old, uint32_t *new), + void *context, enum allocation_event *ev) +diff --git a/drivers/md/persistent-data/dm-space-map-common.h b/drivers/md/persistent-data/dm-space-map-common.h +index b3078d5eda0c..8de63ce39bdd 100644 +--- a/drivers/md/persistent-data/dm-space-map-common.h ++++ b/drivers/md/persistent-data/dm-space-map-common.h +@@ -109,6 +109,8 @@ int sm_ll_lookup_bitmap(struct ll_disk *ll, dm_block_t b, uint32_t *result); + int sm_ll_lookup(struct ll_disk *ll, dm_block_t b, uint32_t *result); + int sm_ll_find_free_block(struct ll_disk *ll, dm_block_t begin, + dm_block_t end, dm_block_t *result); ++int sm_ll_find_common_free_block(struct ll_disk *old_ll, struct ll_disk *new_ll, ++ dm_block_t begin, dm_block_t end, dm_block_t *result); + int sm_ll_insert(struct ll_disk *ll, dm_block_t b, uint32_t ref_count, enum allocation_event *ev); + int sm_ll_inc(struct ll_disk *ll, dm_block_t b, enum allocation_event *ev); + int sm_ll_dec(struct ll_disk *ll, dm_block_t b, enum allocation_event *ev); +diff --git a/drivers/md/persistent-data/dm-space-map-disk.c b/drivers/md/persistent-data/dm-space-map-disk.c +index 32adf6b4a9c7..bf4c5e2ccb6f 100644 +--- a/drivers/md/persistent-data/dm-space-map-disk.c ++++ b/drivers/md/persistent-data/dm-space-map-disk.c +@@ -167,8 +167,10 @@ static int sm_disk_new_block(struct dm_space_map *sm, dm_block_t *b) + enum allocation_event ev; + struct sm_disk *smd = container_of(sm, struct sm_disk, sm); + +- /* FIXME: we should loop round a couple of times */ +- r = sm_ll_find_free_block(&smd->old_ll, smd->begin, smd->old_ll.nr_blocks, b); ++ /* ++ * Any block we allocate has to be free in both the old and current ll. ++ */ ++ r = sm_ll_find_common_free_block(&smd->old_ll, &smd->ll, smd->begin, smd->ll.nr_blocks, b); + if (r) + return r; + +diff --git a/drivers/md/persistent-data/dm-space-map-metadata.c b/drivers/md/persistent-data/dm-space-map-metadata.c +index 1d29771af380..967d8f2a731f 100644 +--- a/drivers/md/persistent-data/dm-space-map-metadata.c ++++ b/drivers/md/persistent-data/dm-space-map-metadata.c +@@ -447,7 +447,10 @@ static int sm_metadata_new_block_(struct dm_space_map *sm, dm_block_t *b) + enum allocation_event ev; + struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm); + +- r = sm_ll_find_free_block(&smm->old_ll, smm->begin, smm->old_ll.nr_blocks, b); ++ /* ++ * Any block we allocate has to be free in both the old and current ll. ++ */ ++ r = sm_ll_find_common_free_block(&smm->old_ll, &smm->ll, smm->begin, smm->ll.nr_blocks, b); + if (r) + return r; + +diff --git a/drivers/media/rc/iguanair.c b/drivers/media/rc/iguanair.c +index cda4ce612dcf..782391507e3a 100644 +--- a/drivers/media/rc/iguanair.c ++++ b/drivers/media/rc/iguanair.c +@@ -430,7 +430,7 @@ static int iguanair_probe(struct usb_interface *intf, + int ret, pipein, pipeout; + struct usb_host_interface *idesc; + +- idesc = intf->altsetting; ++ idesc = intf->cur_altsetting; + if (idesc->desc.bNumEndpoints < 2) + return -ENODEV; + +diff --git a/drivers/media/usb/uvc/uvc_driver.c b/drivers/media/usb/uvc/uvc_driver.c +index ebd1b882556d..9cd0268b2767 100644 +--- a/drivers/media/usb/uvc/uvc_driver.c ++++ b/drivers/media/usb/uvc/uvc_driver.c +@@ -1411,6 +1411,11 @@ static int uvc_scan_chain_forward(struct uvc_video_chain *chain, + break; + if (forward == prev) + continue; ++ if (forward->chain.next || forward->chain.prev) { ++ uvc_trace(UVC_TRACE_DESCR, "Found reference to " ++ "entity %d already in chain.\n", forward->id); ++ return -EINVAL; ++ } + + switch (UVC_ENTITY_TYPE(forward)) { + case UVC_VC_EXTENSION_UNIT: +@@ -1492,6 +1497,13 @@ static int uvc_scan_chain_backward(struct uvc_video_chain *chain, + return -1; + } + ++ if (term->chain.next || term->chain.prev) { ++ uvc_trace(UVC_TRACE_DESCR, "Found reference to " ++ "entity %d already in chain.\n", ++ term->id); ++ return -EINVAL; ++ } ++ + if (uvc_trace_param & UVC_TRACE_PROBE) + printk(" %d", term->id); + +diff --git a/drivers/mfd/da9062-core.c b/drivers/mfd/da9062-core.c +index a9ad024ec6b0..16c6f07e045d 100644 +--- a/drivers/mfd/da9062-core.c ++++ b/drivers/mfd/da9062-core.c +@@ -142,7 +142,7 @@ static const struct mfd_cell da9062_devs[] = { + .name = "da9062-watchdog", + .num_resources = ARRAY_SIZE(da9062_wdt_resources), + .resources = da9062_wdt_resources, +- .of_compatible = "dlg,da9062-wdt", ++ .of_compatible = "dlg,da9062-watchdog", + }, + { + .name = "da9062-thermal", +diff --git a/drivers/mfd/dln2.c b/drivers/mfd/dln2.c +index 704e189ca162..95d0f2df0ad4 100644 +--- a/drivers/mfd/dln2.c ++++ b/drivers/mfd/dln2.c +@@ -729,6 +729,8 @@ static int dln2_probe(struct usb_interface *interface, + const struct usb_device_id *usb_id) + { + struct usb_host_interface *hostif = interface->cur_altsetting; ++ struct usb_endpoint_descriptor *epin; ++ struct usb_endpoint_descriptor *epout; + struct device *dev = &interface->dev; + struct dln2_dev *dln2; + int ret; +@@ -738,12 +740,19 @@ static int dln2_probe(struct usb_interface *interface, + hostif->desc.bNumEndpoints < 2) + return -ENODEV; + ++ epin = &hostif->endpoint[0].desc; ++ epout = &hostif->endpoint[1].desc; ++ if (!usb_endpoint_is_bulk_out(epout)) ++ return -ENODEV; ++ if (!usb_endpoint_is_bulk_in(epin)) ++ return -ENODEV; ++ + dln2 = kzalloc(sizeof(*dln2), GFP_KERNEL); + if (!dln2) + return -ENOMEM; + +- dln2->ep_out = hostif->endpoint[0].desc.bEndpointAddress; +- dln2->ep_in = hostif->endpoint[1].desc.bEndpointAddress; ++ dln2->ep_out = epout->bEndpointAddress; ++ dln2->ep_in = epin->bEndpointAddress; + dln2->usb_dev = usb_get_dev(interface_to_usbdev(interface)); + dln2->interface = interface; + usb_set_intfdata(interface, dln2); +diff --git a/drivers/mfd/rn5t618.c b/drivers/mfd/rn5t618.c +index 666857192dbe..b6db5e5cc3a6 100644 +--- a/drivers/mfd/rn5t618.c ++++ b/drivers/mfd/rn5t618.c +@@ -28,6 +28,7 @@ static bool rn5t618_volatile_reg(struct device *dev, unsigned int reg) + case RN5T618_WATCHDOGCNT: + case RN5T618_DCIRQ: + case RN5T618_ILIMDATAH ... RN5T618_AIN0DATAL: ++ case RN5T618_ADCCNT3: + case RN5T618_IR_ADC1 ... RN5T618_IR_ADC3: + case RN5T618_IR_GPR: + case RN5T618_IR_GPF: +diff --git a/drivers/mmc/host/mmc_spi.c b/drivers/mmc/host/mmc_spi.c +index 40a369c7005a..b52489a67097 100644 +--- a/drivers/mmc/host/mmc_spi.c ++++ b/drivers/mmc/host/mmc_spi.c +@@ -1153,17 +1153,22 @@ static void mmc_spi_initsequence(struct mmc_spi_host *host) + * SPI protocol. Another is that when chipselect is released while + * the card returns BUSY status, the clock must issue several cycles + * with chipselect high before the card will stop driving its output. ++ * ++ * SPI_CS_HIGH means "asserted" here. In some cases like when using ++ * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically ++ * inverted by gpiolib, so if we want to ascertain to drive it high ++ * we should toggle the default with an XOR as we do here. + */ +- host->spi->mode |= SPI_CS_HIGH; ++ host->spi->mode ^= SPI_CS_HIGH; + if (spi_setup(host->spi) != 0) { + /* Just warn; most cards work without it. */ + dev_warn(&host->spi->dev, + "can't change chip-select polarity\n"); +- host->spi->mode &= ~SPI_CS_HIGH; ++ host->spi->mode ^= SPI_CS_HIGH; + } else { + mmc_spi_readbytes(host, 18); + +- host->spi->mode &= ~SPI_CS_HIGH; ++ host->spi->mode ^= SPI_CS_HIGH; + if (spi_setup(host->spi) != 0) { + /* Wot, we can't get the same setup we had before? */ + dev_err(&host->spi->dev, +diff --git a/drivers/net/bonding/bond_alb.c b/drivers/net/bonding/bond_alb.c +index 82d23bd3a742..0615522933dc 100644 +--- a/drivers/net/bonding/bond_alb.c ++++ b/drivers/net/bonding/bond_alb.c +@@ -1371,26 +1371,31 @@ int bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev) + bool do_tx_balance = true; + u32 hash_index = 0; + const u8 *hash_start = NULL; +- struct ipv6hdr *ip6hdr; + + skb_reset_mac_header(skb); + eth_data = eth_hdr(skb); + + switch (ntohs(skb->protocol)) { + case ETH_P_IP: { +- const struct iphdr *iph = ip_hdr(skb); ++ const struct iphdr *iph; + + if (ether_addr_equal_64bits(eth_data->h_dest, mac_bcast) || +- (iph->daddr == ip_bcast) || +- (iph->protocol == IPPROTO_IGMP)) { ++ (!pskb_network_may_pull(skb, sizeof(*iph)))) { ++ do_tx_balance = false; ++ break; ++ } ++ iph = ip_hdr(skb); ++ if (iph->daddr == ip_bcast || iph->protocol == IPPROTO_IGMP) { + do_tx_balance = false; + break; + } + hash_start = (char *)&(iph->daddr); + hash_size = sizeof(iph->daddr); +- } + break; +- case ETH_P_IPV6: ++ } ++ case ETH_P_IPV6: { ++ const struct ipv6hdr *ip6hdr; ++ + /* IPv6 doesn't really use broadcast mac address, but leave + * that here just in case. + */ +@@ -1407,7 +1412,11 @@ int bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev) + break; + } + +- /* Additianally, DAD probes should not be tx-balanced as that ++ if (!pskb_network_may_pull(skb, sizeof(*ip6hdr))) { ++ do_tx_balance = false; ++ break; ++ } ++ /* Additionally, DAD probes should not be tx-balanced as that + * will lead to false positives for duplicate addresses and + * prevent address configuration from working. + */ +@@ -1417,17 +1426,26 @@ int bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev) + break; + } + +- hash_start = (char *)&(ipv6_hdr(skb)->daddr); +- hash_size = sizeof(ipv6_hdr(skb)->daddr); ++ hash_start = (char *)&ip6hdr->daddr; ++ hash_size = sizeof(ip6hdr->daddr); + break; +- case ETH_P_IPX: +- if (ipx_hdr(skb)->ipx_checksum != IPX_NO_CHECKSUM) { ++ } ++ case ETH_P_IPX: { ++ const struct ipxhdr *ipxhdr; ++ ++ if (pskb_network_may_pull(skb, sizeof(*ipxhdr))) { ++ do_tx_balance = false; ++ break; ++ } ++ ipxhdr = (struct ipxhdr *)skb_network_header(skb); ++ ++ if (ipxhdr->ipx_checksum != IPX_NO_CHECKSUM) { + /* something is wrong with this packet */ + do_tx_balance = false; + break; + } + +- if (ipx_hdr(skb)->ipx_type != IPX_TYPE_NCP) { ++ if (ipxhdr->ipx_type != IPX_TYPE_NCP) { + /* The only protocol worth balancing in + * this family since it has an "ARP" like + * mechanism +@@ -1436,9 +1454,11 @@ int bond_alb_xmit(struct sk_buff *skb, struct net_device *bond_dev) + break; + } + ++ eth_data = eth_hdr(skb); + hash_start = (char *)eth_data->h_dest; + hash_size = ETH_ALEN; + break; ++ } + case ETH_P_ARP: + do_tx_balance = false; + if (bond_info->rlb_enabled) +diff --git a/drivers/net/ethernet/broadcom/bcmsysport.c b/drivers/net/ethernet/broadcom/bcmsysport.c +index 9530ee12726f..3cb99ce7325b 100644 +--- a/drivers/net/ethernet/broadcom/bcmsysport.c ++++ b/drivers/net/ethernet/broadcom/bcmsysport.c +@@ -1997,6 +1997,9 @@ static int bcm_sysport_resume(struct device *d) + + umac_reset(priv); + ++ /* Disable the UniMAC RX/TX */ ++ umac_enable_set(priv, CMD_RX_EN | CMD_TX_EN, 0); ++ + /* We may have been suspended and never received a WOL event that + * would turn off MPD detection, take care of that now + */ +diff --git a/drivers/net/ethernet/dec/tulip/dmfe.c b/drivers/net/ethernet/dec/tulip/dmfe.c +index afd8e78e024e..ff5cae052c40 100644 +--- a/drivers/net/ethernet/dec/tulip/dmfe.c ++++ b/drivers/net/ethernet/dec/tulip/dmfe.c +@@ -2228,15 +2228,16 @@ static int __init dmfe_init_module(void) + if (cr6set) + dmfe_cr6_user_set = cr6set; + +- switch(mode) { +- case DMFE_10MHF: ++ switch (mode) { ++ case DMFE_10MHF: + case DMFE_100MHF: + case DMFE_10MFD: + case DMFE_100MFD: + case DMFE_1M_HPNA: + dmfe_media_mode = mode; + break; +- default:dmfe_media_mode = DMFE_AUTO; ++ default: ++ dmfe_media_mode = DMFE_AUTO; + break; + } + +diff --git a/drivers/net/ethernet/dec/tulip/uli526x.c b/drivers/net/ethernet/dec/tulip/uli526x.c +index 447d09272ab7..7e0e36a3270c 100644 +--- a/drivers/net/ethernet/dec/tulip/uli526x.c ++++ b/drivers/net/ethernet/dec/tulip/uli526x.c +@@ -1813,8 +1813,8 @@ static int __init uli526x_init_module(void) + if (cr6set) + uli526x_cr6_user_set = cr6set; + +- switch (mode) { +- case ULI526X_10MHF: ++ switch (mode) { ++ case ULI526X_10MHF: + case ULI526X_100MHF: + case ULI526X_10MFD: + case ULI526X_100MFD: +diff --git a/drivers/net/ethernet/smsc/smc911x.c b/drivers/net/ethernet/smsc/smc911x.c +index 37fb6dfc1087..0be9c74238fd 100644 +--- a/drivers/net/ethernet/smsc/smc911x.c ++++ b/drivers/net/ethernet/smsc/smc911x.c +@@ -945,7 +945,7 @@ static void smc911x_phy_configure(struct work_struct *work) + if (lp->ctl_rspeed != 100) + my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF); + +- if (!lp->ctl_rfduplx) ++ if (!lp->ctl_rfduplx) + my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL); + + /* Update our Auto-Neg Advertisement Register */ +diff --git a/drivers/net/ppp/ppp_async.c b/drivers/net/ppp/ppp_async.c +index 9c889e0303dd..cef40de1bd05 100644 +--- a/drivers/net/ppp/ppp_async.c ++++ b/drivers/net/ppp/ppp_async.c +@@ -878,15 +878,15 @@ ppp_async_input(struct asyncppp *ap, const unsigned char *buf, + skb = dev_alloc_skb(ap->mru + PPP_HDRLEN + 2); + if (!skb) + goto nomem; +- ap->rpkt = skb; +- } +- if (skb->len == 0) { +- /* Try to get the payload 4-byte aligned. +- * This should match the +- * PPP_ALLSTATIONS/PPP_UI/compressed tests in +- * process_input_packet, but we do not have +- * enough chars here to test buf[1] and buf[2]. +- */ ++ ap->rpkt = skb; ++ } ++ if (skb->len == 0) { ++ /* Try to get the payload 4-byte aligned. ++ * This should match the ++ * PPP_ALLSTATIONS/PPP_UI/compressed tests in ++ * process_input_packet, but we do not have ++ * enough chars here to test buf[1] and buf[2]. ++ */ + if (buf[0] != PPP_ALLSTATIONS) + skb_reserve(skb, 2 + (buf[0] & 1)); + } +diff --git a/drivers/net/wireless/brcm80211/brcmfmac/usb.c b/drivers/net/wireless/brcm80211/brcmfmac/usb.c +index b9bfa592bcab..2cb3f12dccbd 100644 +--- a/drivers/net/wireless/brcm80211/brcmfmac/usb.c ++++ b/drivers/net/wireless/brcm80211/brcmfmac/usb.c +@@ -426,6 +426,7 @@ fail: + usb_free_urb(req->urb); + list_del(q->next); + } ++ kfree(reqs); + return NULL; + + } +diff --git a/drivers/net/wireless/libertas/cfg.c b/drivers/net/wireless/libertas/cfg.c +index 0824697c3dca..7d55de21b190 100644 +--- a/drivers/net/wireless/libertas/cfg.c ++++ b/drivers/net/wireless/libertas/cfg.c +@@ -1853,6 +1853,8 @@ static int lbs_ibss_join_existing(struct lbs_private *priv, + rates_max = rates_eid[1]; + if (rates_max > MAX_RATES) { + lbs_deb_join("invalid rates"); ++ rcu_read_unlock(); ++ ret = -EINVAL; + goto out; + } + rates = cmd.bss.rates; +diff --git a/drivers/net/wireless/mwifiex/scan.c b/drivers/net/wireless/mwifiex/scan.c +index 39b78dc1bd92..e7c8972431d3 100644 +--- a/drivers/net/wireless/mwifiex/scan.c ++++ b/drivers/net/wireless/mwifiex/scan.c +@@ -2568,6 +2568,13 @@ mwifiex_cmd_append_vsie_tlv(struct mwifiex_private *priv, + vs_param_set->header.len = + cpu_to_le16((((u16) priv->vs_ie[id].ie[1]) + & 0x00FF) + 2); ++ if (le16_to_cpu(vs_param_set->header.len) > ++ MWIFIEX_MAX_VSIE_LEN) { ++ mwifiex_dbg(priv->adapter, ERROR, ++ "Invalid param length!\n"); ++ break; ++ } ++ + memcpy(vs_param_set->ie, priv->vs_ie[id].ie, + le16_to_cpu(vs_param_set->header.len)); + *buffer += le16_to_cpu(vs_param_set->header.len) + +diff --git a/drivers/net/wireless/mwifiex/sta_ioctl.c b/drivers/net/wireless/mwifiex/sta_ioctl.c +index a13c6f1712b3..a1c376c5dab9 100644 +--- a/drivers/net/wireless/mwifiex/sta_ioctl.c ++++ b/drivers/net/wireless/mwifiex/sta_ioctl.c +@@ -232,6 +232,7 @@ static int mwifiex_process_country_ie(struct mwifiex_private *priv, + + if (country_ie_len > + (IEEE80211_COUNTRY_STRING_LEN + MWIFIEX_MAX_TRIPLET_802_11D)) { ++ rcu_read_unlock(); + mwifiex_dbg(priv->adapter, ERROR, + "11D: country_ie_len overflow!, deauth AP\n"); + return -EINVAL; +diff --git a/drivers/net/wireless/mwifiex/wmm.c b/drivers/net/wireless/mwifiex/wmm.c +index 7015dfab49cf..3a2ecb6cf1c3 100644 +--- a/drivers/net/wireless/mwifiex/wmm.c ++++ b/drivers/net/wireless/mwifiex/wmm.c +@@ -978,6 +978,10 @@ int mwifiex_ret_wmm_get_status(struct mwifiex_private *priv, + "WMM Parameter Set Count: %d\n", + wmm_param_ie->qos_info_bitmap & mask); + ++ if (wmm_param_ie->vend_hdr.len + 2 > ++ sizeof(struct ieee_types_wmm_parameter)) ++ break; ++ + memcpy((u8 *) &priv->curr_bss_params.bss_descriptor. + wmm_ie, wmm_param_ie, + wmm_param_ie->vend_hdr.len + 2); +diff --git a/drivers/nfc/pn544/pn544.c b/drivers/nfc/pn544/pn544.c +index 12e819ddf17a..3afc53ff7369 100644 +--- a/drivers/nfc/pn544/pn544.c ++++ b/drivers/nfc/pn544/pn544.c +@@ -704,7 +704,7 @@ static int pn544_hci_check_presence(struct nfc_hci_dev *hdev, + target->nfcid1_len != 10) + return -EOPNOTSUPP; + +- return nfc_hci_send_cmd(hdev, NFC_HCI_RF_READER_A_GATE, ++ return nfc_hci_send_cmd(hdev, NFC_HCI_RF_READER_A_GATE, + PN544_RF_READER_CMD_ACTIVATE_NEXT, + target->nfcid1, target->nfcid1_len, NULL); + } else if (target->supported_protocols & (NFC_PROTO_JEWEL_MASK | +diff --git a/drivers/of/Kconfig b/drivers/of/Kconfig +index e2a48415d969..4ba54ffb3a4b 100644 +--- a/drivers/of/Kconfig ++++ b/drivers/of/Kconfig +@@ -112,4 +112,8 @@ config OF_OVERLAY + While this option is selected automatically when needed, you can + enable it manually to improve device tree unit test coverage. + ++config OF_DMA_DEFAULT_COHERENT ++ # arches should select this if DMA is coherent by default for OF devices ++ bool ++ + endif # OF +diff --git a/drivers/of/address.c b/drivers/of/address.c +index 4fe5fe21cd49..b3bf8762f4e8 100644 +--- a/drivers/of/address.c ++++ b/drivers/of/address.c +@@ -1009,12 +1009,16 @@ EXPORT_SYMBOL_GPL(of_dma_get_range); + * @np: device node + * + * It returns true if "dma-coherent" property was found +- * for this device in DT. ++ * for this device in the DT, or if DMA is coherent by ++ * default for OF devices on the current platform. + */ + bool of_dma_is_coherent(struct device_node *np) + { + struct device_node *node = of_node_get(np); + ++ if (IS_ENABLED(CONFIG_OF_DMA_DEFAULT_COHERENT)) ++ return true; ++ + while (node) { + if (of_property_read_bool(node, "dma-coherent")) { + of_node_put(node); +diff --git a/drivers/pci/host/pci-keystone-dw.c b/drivers/pci/host/pci-keystone-dw.c +index 6153853ca9c3..988e7e7350c7 100644 +--- a/drivers/pci/host/pci-keystone-dw.c ++++ b/drivers/pci/host/pci-keystone-dw.c +@@ -450,7 +450,7 @@ void ks_dw_pcie_initiate_link_train(struct keystone_pcie *ks_pcie) + /* Disable Link training */ + val = readl(ks_pcie->va_app_base + CMD_STATUS); + val &= ~LTSSM_EN_VAL; +- writel(LTSSM_EN_VAL | val, ks_pcie->va_app_base + CMD_STATUS); ++ writel(val, ks_pcie->va_app_base + CMD_STATUS); + + /* Initiate Link Training */ + val = readl(ks_pcie->va_app_base + CMD_STATUS); +diff --git a/drivers/pinctrl/sh-pfc/pfc-r8a7778.c b/drivers/pinctrl/sh-pfc/pfc-r8a7778.c +index bbd35dc1a0c4..4d0ef5e9e9d8 100644 +--- a/drivers/pinctrl/sh-pfc/pfc-r8a7778.c ++++ b/drivers/pinctrl/sh-pfc/pfc-r8a7778.c +@@ -2324,7 +2324,7 @@ static const struct pinmux_cfg_reg pinmux_config_regs[] = { + FN_ATAG0_A, 0, FN_REMOCON_B, 0, + /* IP0_11_8 [4] */ + FN_SD1_DAT2_A, FN_MMC_D2, 0, FN_BS, +- FN_ATADIR0_A, 0, FN_SDSELF_B, 0, ++ FN_ATADIR0_A, 0, FN_SDSELF_A, 0, + FN_PWM4_B, 0, 0, 0, + 0, 0, 0, 0, + /* IP0_7_5 [3] */ +@@ -2366,7 +2366,7 @@ static const struct pinmux_cfg_reg pinmux_config_regs[] = { + FN_TS_SDAT0_A, 0, 0, 0, + 0, 0, 0, 0, + /* IP1_10_8 [3] */ +- FN_SD1_CLK_B, FN_MMC_D6, 0, FN_A24, ++ FN_SD1_CD_A, FN_MMC_D6, 0, FN_A24, + FN_DREQ1_A, 0, FN_HRX0_B, FN_TS_SPSYNC0_A, + /* IP1_7_5 [3] */ + FN_A23, FN_HTX0_B, FN_TX2_B, FN_DACK2_A, +diff --git a/drivers/power/ltc2941-battery-gauge.c b/drivers/power/ltc2941-battery-gauge.c +index 4adf2ba021ce..043de9d039d5 100644 +--- a/drivers/power/ltc2941-battery-gauge.c ++++ b/drivers/power/ltc2941-battery-gauge.c +@@ -364,7 +364,7 @@ static int ltc294x_i2c_remove(struct i2c_client *client) + { + struct ltc294x_info *info = i2c_get_clientdata(client); + +- cancel_delayed_work(&info->work); ++ cancel_delayed_work_sync(&info->work); + power_supply_unregister(info->supply); + return 0; + } +diff --git a/drivers/rtc/rtc-hym8563.c b/drivers/rtc/rtc-hym8563.c +index b1b4746a0eab..dbec596494eb 100644 +--- a/drivers/rtc/rtc-hym8563.c ++++ b/drivers/rtc/rtc-hym8563.c +@@ -105,7 +105,7 @@ static int hym8563_rtc_read_time(struct device *dev, struct rtc_time *tm) + + if (!hym8563->valid) { + dev_warn(&client->dev, "no valid clock/calendar values available\n"); +- return -EPERM; ++ return -EINVAL; + } + + ret = i2c_smbus_read_i2c_block_data(client, HYM8563_SEC, 7, buf); +diff --git a/drivers/scsi/csiostor/csio_scsi.c b/drivers/scsi/csiostor/csio_scsi.c +index ddbdaade654d..11db61d3b966 100644 +--- a/drivers/scsi/csiostor/csio_scsi.c ++++ b/drivers/scsi/csiostor/csio_scsi.c +@@ -1383,7 +1383,7 @@ csio_device_reset(struct device *dev, + return -EINVAL; + + /* Delete NPIV lnodes */ +- csio_lnodes_exit(hw, 1); ++ csio_lnodes_exit(hw, 1); + + /* Block upper IOs */ + csio_lnodes_block_request(hw); +diff --git a/drivers/scsi/qla2xxx/qla_mbx.c b/drivers/scsi/qla2xxx/qla_mbx.c +index 87059a6786f4..03d466c07513 100644 +--- a/drivers/scsi/qla2xxx/qla_mbx.c ++++ b/drivers/scsi/qla2xxx/qla_mbx.c +@@ -5455,9 +5455,8 @@ qla2x00_dump_mctp_data(scsi_qla_host_t *vha, dma_addr_t req_dma, uint32_t addr, + mcp->mb[7] = LSW(MSD(req_dma)); + mcp->mb[8] = MSW(addr); + /* Setting RAM ID to valid */ +- mcp->mb[10] |= BIT_7; + /* For MCTP RAM ID is 0x40 */ +- mcp->mb[10] |= 0x40; ++ mcp->mb[10] = BIT_7 | 0x40; + + mcp->out_mb |= MBX_10|MBX_8|MBX_7|MBX_6|MBX_5|MBX_4|MBX_3|MBX_2|MBX_1| + MBX_0; +diff --git a/drivers/scsi/qla2xxx/qla_nx.c b/drivers/scsi/qla2xxx/qla_nx.c +index b6b4cfdd7620..65f8d2d94159 100644 +--- a/drivers/scsi/qla2xxx/qla_nx.c ++++ b/drivers/scsi/qla2xxx/qla_nx.c +@@ -10,6 +10,7 @@ + #include <linux/ratelimit.h> + #include <linux/vmalloc.h> + #include <scsi/scsi_tcq.h> ++#include <asm/unaligned.h> + + #define MASK(n) ((1ULL<<(n))-1) + #define MN_WIN(addr) (((addr & 0x1fc0000) >> 1) | \ +@@ -1600,8 +1601,7 @@ qla82xx_get_bootld_offset(struct qla_hw_data *ha) + return (u8 *)&ha->hablob->fw->data[offset]; + } + +-static __le32 +-qla82xx_get_fw_size(struct qla_hw_data *ha) ++static u32 qla82xx_get_fw_size(struct qla_hw_data *ha) + { + struct qla82xx_uri_data_desc *uri_desc = NULL; + +@@ -1612,7 +1612,7 @@ qla82xx_get_fw_size(struct qla_hw_data *ha) + return cpu_to_le32(uri_desc->size); + } + +- return cpu_to_le32(*(u32 *)&ha->hablob->fw->data[FW_SIZE_OFFSET]); ++ return get_unaligned_le32(&ha->hablob->fw->data[FW_SIZE_OFFSET]); + } + + static u8 * +@@ -1803,7 +1803,7 @@ qla82xx_fw_load_from_blob(struct qla_hw_data *ha) + } + + flashaddr = FLASH_ADDR_START; +- size = (__force u32)qla82xx_get_fw_size(ha) / 8; ++ size = qla82xx_get_fw_size(ha) / 8; + ptr64 = (u64 *)qla82xx_get_fw_offs(ha); + + for (i = 0; i < size; i++) { +diff --git a/drivers/scsi/qla4xxx/ql4_os.c b/drivers/scsi/qla4xxx/ql4_os.c +index f714d5f917d1..3fda5836aac6 100644 +--- a/drivers/scsi/qla4xxx/ql4_os.c ++++ b/drivers/scsi/qla4xxx/ql4_os.c +@@ -4150,7 +4150,7 @@ static void qla4xxx_mem_free(struct scsi_qla_host *ha) + dma_free_coherent(&ha->pdev->dev, ha->queues_len, ha->queues, + ha->queues_dma); + +- if (ha->fw_dump) ++ if (ha->fw_dump) + vfree(ha->fw_dump); + + ha->queues_len = 0; +diff --git a/drivers/scsi/ufs/ufshcd.c b/drivers/scsi/ufs/ufshcd.c +index fcf5141bf950..19f82069c68a 100644 +--- a/drivers/scsi/ufs/ufshcd.c ++++ b/drivers/scsi/ufs/ufshcd.c +@@ -4324,7 +4324,8 @@ static int ufshcd_probe_hba(struct ufs_hba *hba) + ufshcd_init_icc_levels(hba); + + /* Add required well known logical units to scsi mid layer */ +- if (ufshcd_scsi_add_wlus(hba)) ++ ret = ufshcd_scsi_add_wlus(hba); ++ if (ret) + goto out; + + scsi_scan_host(hba->host); +diff --git a/drivers/usb/gadget/function/f_ecm.c b/drivers/usb/gadget/function/f_ecm.c +index 4ce19b860289..79b52dce6b9a 100644 +--- a/drivers/usb/gadget/function/f_ecm.c ++++ b/drivers/usb/gadget/function/f_ecm.c +@@ -56,6 +56,7 @@ struct f_ecm { + struct usb_ep *notify; + struct usb_request *notify_req; + u8 notify_state; ++ atomic_t notify_count; + bool is_open; + + /* FIXME is_open needs some irq-ish locking +@@ -384,7 +385,7 @@ static void ecm_do_notify(struct f_ecm *ecm) + int status; + + /* notification already in flight? */ +- if (!req) ++ if (atomic_read(&ecm->notify_count)) + return; + + event = req->buf; +@@ -424,10 +425,10 @@ static void ecm_do_notify(struct f_ecm *ecm) + event->bmRequestType = 0xA1; + event->wIndex = cpu_to_le16(ecm->ctrl_id); + +- ecm->notify_req = NULL; ++ atomic_inc(&ecm->notify_count); + status = usb_ep_queue(ecm->notify, req, GFP_ATOMIC); + if (status < 0) { +- ecm->notify_req = req; ++ atomic_dec(&ecm->notify_count); + DBG(cdev, "notify --> %d\n", status); + } + } +@@ -452,17 +453,19 @@ static void ecm_notify_complete(struct usb_ep *ep, struct usb_request *req) + switch (req->status) { + case 0: + /* no fault */ ++ atomic_dec(&ecm->notify_count); + break; + case -ECONNRESET: + case -ESHUTDOWN: ++ atomic_set(&ecm->notify_count, 0); + ecm->notify_state = ECM_NOTIFY_NONE; + break; + default: + DBG(cdev, "event %02x --> %d\n", + event->bNotificationType, req->status); ++ atomic_dec(&ecm->notify_count); + break; + } +- ecm->notify_req = req; + ecm_do_notify(ecm); + } + +@@ -909,6 +912,11 @@ static void ecm_unbind(struct usb_configuration *c, struct usb_function *f) + + usb_free_all_descriptors(f); + ++ if (atomic_read(&ecm->notify_count)) { ++ usb_ep_dequeue(ecm->notify, ecm->notify_req); ++ atomic_set(&ecm->notify_count, 0); ++ } ++ + kfree(ecm->notify_req->buf); + usb_ep_free_request(ecm->notify, ecm->notify_req); + } +diff --git a/drivers/usb/gadget/function/f_ncm.c b/drivers/usb/gadget/function/f_ncm.c +index 7ad798ace1e5..16908737bff1 100644 +--- a/drivers/usb/gadget/function/f_ncm.c ++++ b/drivers/usb/gadget/function/f_ncm.c +@@ -57,6 +57,7 @@ struct f_ncm { + struct usb_ep *notify; + struct usb_request *notify_req; + u8 notify_state; ++ atomic_t notify_count; + bool is_open; + + const struct ndp_parser_opts *parser_opts; +@@ -480,7 +481,7 @@ static void ncm_do_notify(struct f_ncm *ncm) + int status; + + /* notification already in flight? */ +- if (!req) ++ if (atomic_read(&ncm->notify_count)) + return; + + event = req->buf; +@@ -520,7 +521,8 @@ static void ncm_do_notify(struct f_ncm *ncm) + event->bmRequestType = 0xA1; + event->wIndex = cpu_to_le16(ncm->ctrl_id); + +- ncm->notify_req = NULL; ++ atomic_inc(&ncm->notify_count); ++ + /* + * In double buffering if there is a space in FIFO, + * completion callback can be called right after the call, +@@ -530,7 +532,7 @@ static void ncm_do_notify(struct f_ncm *ncm) + status = usb_ep_queue(ncm->notify, req, GFP_ATOMIC); + spin_lock(&ncm->lock); + if (status < 0) { +- ncm->notify_req = req; ++ atomic_dec(&ncm->notify_count); + DBG(cdev, "notify --> %d\n", status); + } + } +@@ -565,17 +567,19 @@ static void ncm_notify_complete(struct usb_ep *ep, struct usb_request *req) + case 0: + VDBG(cdev, "Notification %02x sent\n", + event->bNotificationType); ++ atomic_dec(&ncm->notify_count); + break; + case -ECONNRESET: + case -ESHUTDOWN: ++ atomic_set(&ncm->notify_count, 0); + ncm->notify_state = NCM_NOTIFY_NONE; + break; + default: + DBG(cdev, "event %02x --> %d\n", + event->bNotificationType, req->status); ++ atomic_dec(&ncm->notify_count); + break; + } +- ncm->notify_req = req; + ncm_do_notify(ncm); + spin_unlock(&ncm->lock); + } +@@ -1559,6 +1563,11 @@ static void ncm_unbind(struct usb_configuration *c, struct usb_function *f) + ncm_string_defs[0].id = 0; + usb_free_all_descriptors(f); + ++ if (atomic_read(&ncm->notify_count)) { ++ usb_ep_dequeue(ncm->notify, ncm->notify_req); ++ atomic_set(&ncm->notify_count, 0); ++ } ++ + kfree(ncm->notify_req->buf); + usb_ep_free_request(ncm->notify, ncm->notify_req); + } +diff --git a/drivers/usb/gadget/legacy/cdc2.c b/drivers/usb/gadget/legacy/cdc2.c +index ecd8c8d62f2e..d70e7d43241a 100644 +--- a/drivers/usb/gadget/legacy/cdc2.c ++++ b/drivers/usb/gadget/legacy/cdc2.c +@@ -229,7 +229,7 @@ static struct usb_composite_driver cdc_driver = { + .name = "g_cdc", + .dev = &device_desc, + .strings = dev_strings, +- .max_speed = USB_SPEED_HIGH, ++ .max_speed = USB_SPEED_SUPER, + .bind = cdc_bind, + .unbind = cdc_unbind, + }; +diff --git a/drivers/usb/gadget/legacy/g_ffs.c b/drivers/usb/gadget/legacy/g_ffs.c +index 320a81b2baa6..c0dccc65db3a 100644 +--- a/drivers/usb/gadget/legacy/g_ffs.c ++++ b/drivers/usb/gadget/legacy/g_ffs.c +@@ -153,7 +153,7 @@ static struct usb_composite_driver gfs_driver = { + .name = DRIVER_NAME, + .dev = &gfs_dev_desc, + .strings = gfs_dev_strings, +- .max_speed = USB_SPEED_HIGH, ++ .max_speed = USB_SPEED_SUPER, + .bind = gfs_bind, + .unbind = gfs_unbind, + }; +diff --git a/drivers/usb/gadget/legacy/multi.c b/drivers/usb/gadget/legacy/multi.c +index 09c7c28f32f7..612c1608fccf 100644 +--- a/drivers/usb/gadget/legacy/multi.c ++++ b/drivers/usb/gadget/legacy/multi.c +@@ -486,7 +486,7 @@ static struct usb_composite_driver multi_driver = { + .name = "g_multi", + .dev = &device_desc, + .strings = dev_strings, +- .max_speed = USB_SPEED_HIGH, ++ .max_speed = USB_SPEED_SUPER, + .bind = multi_bind, + .unbind = multi_unbind, + .needs_serial = 1, +diff --git a/drivers/usb/gadget/legacy/ncm.c b/drivers/usb/gadget/legacy/ncm.c +index 2bae4381332d..cc3ffacbade1 100644 +--- a/drivers/usb/gadget/legacy/ncm.c ++++ b/drivers/usb/gadget/legacy/ncm.c +@@ -203,7 +203,7 @@ static struct usb_composite_driver ncm_driver = { + .name = "g_ncm", + .dev = &device_desc, + .strings = dev_strings, +- .max_speed = USB_SPEED_HIGH, ++ .max_speed = USB_SPEED_SUPER, + .bind = gncm_bind, + .unbind = gncm_unbind, + }; +diff --git a/fs/btrfs/ctree.c b/fs/btrfs/ctree.c +index 62caf3bcadf8..8eac5f75bca3 100644 +--- a/fs/btrfs/ctree.c ++++ b/fs/btrfs/ctree.c +@@ -332,26 +332,6 @@ struct tree_mod_elem { + struct tree_mod_root old_root; + }; + +-static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info) +-{ +- read_lock(&fs_info->tree_mod_log_lock); +-} +- +-static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info) +-{ +- read_unlock(&fs_info->tree_mod_log_lock); +-} +- +-static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info) +-{ +- write_lock(&fs_info->tree_mod_log_lock); +-} +- +-static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info) +-{ +- write_unlock(&fs_info->tree_mod_log_lock); +-} +- + /* + * Pull a new tree mod seq number for our operation. + */ +@@ -371,14 +351,12 @@ static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) + u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, + struct seq_list *elem) + { +- tree_mod_log_write_lock(fs_info); +- spin_lock(&fs_info->tree_mod_seq_lock); ++ write_lock(&fs_info->tree_mod_log_lock); + if (!elem->seq) { + elem->seq = btrfs_inc_tree_mod_seq(fs_info); + list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); + } +- spin_unlock(&fs_info->tree_mod_seq_lock); +- tree_mod_log_write_unlock(fs_info); ++ write_unlock(&fs_info->tree_mod_log_lock); + + return elem->seq; + } +@@ -397,7 +375,7 @@ void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, + if (!seq_putting) + return; + +- spin_lock(&fs_info->tree_mod_seq_lock); ++ write_lock(&fs_info->tree_mod_log_lock); + list_del(&elem->list); + elem->seq = 0; + +@@ -408,19 +386,17 @@ void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, + * blocker with lower sequence number exists, we + * cannot remove anything from the log + */ +- spin_unlock(&fs_info->tree_mod_seq_lock); ++ write_unlock(&fs_info->tree_mod_log_lock); + return; + } + min_seq = cur_elem->seq; + } + } +- spin_unlock(&fs_info->tree_mod_seq_lock); + + /* + * anything that's lower than the lowest existing (read: blocked) + * sequence number can be removed from the tree. + */ +- tree_mod_log_write_lock(fs_info); + tm_root = &fs_info->tree_mod_log; + for (node = rb_first(tm_root); node; node = next) { + next = rb_next(node); +@@ -430,7 +406,7 @@ void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, + rb_erase(node, tm_root); + kfree(tm); + } +- tree_mod_log_write_unlock(fs_info); ++ write_unlock(&fs_info->tree_mod_log_lock); + } + + /* +@@ -441,7 +417,7 @@ void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, + * operations, or the shifted logical of the affected block for all other + * operations. + * +- * Note: must be called with write lock (tree_mod_log_write_lock). ++ * Note: must be called with write lock for fs_info::tree_mod_log_lock. + */ + static noinline int + __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) +@@ -481,7 +457,7 @@ __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) + * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it + * returns zero with the tree_mod_log_lock acquired. The caller must hold + * this until all tree mod log insertions are recorded in the rb tree and then +- * call tree_mod_log_write_unlock() to release. ++ * write unlock fs_info::tree_mod_log_lock. + */ + static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, + struct extent_buffer *eb) { +@@ -491,9 +467,9 @@ static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, + if (eb && btrfs_header_level(eb) == 0) + return 1; + +- tree_mod_log_write_lock(fs_info); ++ write_lock(&fs_info->tree_mod_log_lock); + if (list_empty(&(fs_info)->tree_mod_seq_list)) { +- tree_mod_log_write_unlock(fs_info); ++ write_unlock(&fs_info->tree_mod_log_lock); + return 1; + } + +@@ -557,7 +533,7 @@ tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, + } + + ret = __tree_mod_log_insert(fs_info, tm); +- tree_mod_log_write_unlock(fs_info); ++ write_unlock(&eb->fs_info->tree_mod_log_lock); + if (ret) + kfree(tm); + +@@ -621,7 +597,7 @@ tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, + ret = __tree_mod_log_insert(fs_info, tm); + if (ret) + goto free_tms; +- tree_mod_log_write_unlock(fs_info); ++ write_unlock(&eb->fs_info->tree_mod_log_lock); + kfree(tm_list); + + return 0; +@@ -632,7 +608,7 @@ free_tms: + kfree(tm_list[i]); + } + if (locked) +- tree_mod_log_write_unlock(fs_info); ++ write_unlock(&eb->fs_info->tree_mod_log_lock); + kfree(tm_list); + kfree(tm); + +@@ -713,7 +689,7 @@ tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, + if (!ret) + ret = __tree_mod_log_insert(fs_info, tm); + +- tree_mod_log_write_unlock(fs_info); ++ write_unlock(&fs_info->tree_mod_log_lock); + if (ret) + goto free_tms; + kfree(tm_list); +@@ -741,7 +717,7 @@ __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, + struct tree_mod_elem *found = NULL; + u64 index = start >> PAGE_CACHE_SHIFT; + +- tree_mod_log_read_lock(fs_info); ++ read_lock(&fs_info->tree_mod_log_lock); + tm_root = &fs_info->tree_mod_log; + node = tm_root->rb_node; + while (node) { +@@ -769,7 +745,7 @@ __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, + break; + } + } +- tree_mod_log_read_unlock(fs_info); ++ read_unlock(&fs_info->tree_mod_log_lock); + + return found; + } +@@ -850,7 +826,7 @@ tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, + goto free_tms; + } + +- tree_mod_log_write_unlock(fs_info); ++ write_unlock(&fs_info->tree_mod_log_lock); + kfree(tm_list); + + return 0; +@@ -862,7 +838,7 @@ free_tms: + kfree(tm_list[i]); + } + if (locked) +- tree_mod_log_write_unlock(fs_info); ++ write_unlock(&fs_info->tree_mod_log_lock); + kfree(tm_list); + + return ret; +@@ -922,7 +898,7 @@ tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) + goto free_tms; + + ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); +- tree_mod_log_write_unlock(fs_info); ++ write_unlock(&eb->fs_info->tree_mod_log_lock); + if (ret) + goto free_tms; + kfree(tm_list); +@@ -1284,7 +1260,7 @@ __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, + unsigned long p_size = sizeof(struct btrfs_key_ptr); + + n = btrfs_header_nritems(eb); +- tree_mod_log_read_lock(fs_info); ++ read_lock(&fs_info->tree_mod_log_lock); + while (tm && tm->seq >= time_seq) { + /* + * all the operations are recorded with the operator used for +@@ -1339,7 +1315,7 @@ __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, + if (tm->index != first_tm->index) + break; + } +- tree_mod_log_read_unlock(fs_info); ++ read_unlock(&fs_info->tree_mod_log_lock); + btrfs_set_header_nritems(eb, n); + } + +diff --git a/fs/btrfs/ctree.h b/fs/btrfs/ctree.h +index 4a91d3119e59..0b06d4942da7 100644 +--- a/fs/btrfs/ctree.h ++++ b/fs/btrfs/ctree.h +@@ -1576,14 +1576,12 @@ struct btrfs_fs_info { + struct list_head delayed_iputs; + struct mutex cleaner_delayed_iput_mutex; + +- /* this protects tree_mod_seq_list */ +- spinlock_t tree_mod_seq_lock; + atomic64_t tree_mod_seq; +- struct list_head tree_mod_seq_list; + +- /* this protects tree_mod_log */ ++ /* this protects tree_mod_log and tree_mod_seq_list */ + rwlock_t tree_mod_log_lock; + struct rb_root tree_mod_log; ++ struct list_head tree_mod_seq_list; + + atomic_t nr_async_submits; + atomic_t async_submit_draining; +diff --git a/fs/btrfs/delayed-ref.c b/fs/btrfs/delayed-ref.c +index a2f165029ee6..bb1e32f77b69 100644 +--- a/fs/btrfs/delayed-ref.c ++++ b/fs/btrfs/delayed-ref.c +@@ -279,7 +279,7 @@ void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans, + if (head->is_data) + return; + +- spin_lock(&fs_info->tree_mod_seq_lock); ++ read_lock(&fs_info->tree_mod_log_lock); + if (!list_empty(&fs_info->tree_mod_seq_list)) { + struct seq_list *elem; + +@@ -287,7 +287,7 @@ void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans, + struct seq_list, list); + seq = elem->seq; + } +- spin_unlock(&fs_info->tree_mod_seq_lock); ++ read_unlock(&fs_info->tree_mod_log_lock); + + ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node, + list); +@@ -315,7 +315,7 @@ int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, + struct seq_list *elem; + int ret = 0; + +- spin_lock(&fs_info->tree_mod_seq_lock); ++ read_lock(&fs_info->tree_mod_log_lock); + if (!list_empty(&fs_info->tree_mod_seq_list)) { + elem = list_first_entry(&fs_info->tree_mod_seq_list, + struct seq_list, list); +@@ -328,7 +328,7 @@ int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, + } + } + +- spin_unlock(&fs_info->tree_mod_seq_lock); ++ read_unlock(&fs_info->tree_mod_log_lock); + return ret; + } + +diff --git a/fs/btrfs/disk-io.c b/fs/btrfs/disk-io.c +index d50fc503f73b..2fb533233e8e 100644 +--- a/fs/btrfs/disk-io.c ++++ b/fs/btrfs/disk-io.c +@@ -2481,7 +2481,6 @@ int open_ctree(struct super_block *sb, + spin_lock_init(&fs_info->delayed_iput_lock); + spin_lock_init(&fs_info->defrag_inodes_lock); + spin_lock_init(&fs_info->free_chunk_lock); +- spin_lock_init(&fs_info->tree_mod_seq_lock); + spin_lock_init(&fs_info->super_lock); + spin_lock_init(&fs_info->qgroup_op_lock); + spin_lock_init(&fs_info->buffer_lock); +diff --git a/fs/btrfs/extent_io.c b/fs/btrfs/extent_io.c +index 6f5563ca70c1..2c86c472f670 100644 +--- a/fs/btrfs/extent_io.c ++++ b/fs/btrfs/extent_io.c +@@ -4164,6 +4164,14 @@ retry: + */ + scanned = 1; + index = 0; ++ ++ /* ++ * If we're looping we could run into a page that is locked by a ++ * writer and that writer could be waiting on writeback for a ++ * page in our current bio, and thus deadlock, so flush the ++ * write bio here. ++ */ ++ flush_write_bio(data); + goto retry; + } + btrfs_add_delayed_iput(inode); +diff --git a/fs/btrfs/tests/btrfs-tests.c b/fs/btrfs/tests/btrfs-tests.c +index 9626252ee6b4..69255148f0c8 100644 +--- a/fs/btrfs/tests/btrfs-tests.c ++++ b/fs/btrfs/tests/btrfs-tests.c +@@ -109,7 +109,6 @@ struct btrfs_fs_info *btrfs_alloc_dummy_fs_info(void) + spin_lock_init(&fs_info->qgroup_op_lock); + spin_lock_init(&fs_info->super_lock); + spin_lock_init(&fs_info->fs_roots_radix_lock); +- spin_lock_init(&fs_info->tree_mod_seq_lock); + mutex_init(&fs_info->qgroup_ioctl_lock); + mutex_init(&fs_info->qgroup_rescan_lock); + rwlock_init(&fs_info->tree_mod_log_lock); +diff --git a/fs/btrfs/transaction.c b/fs/btrfs/transaction.c +index 098016338f98..64e449eb2ecd 100644 +--- a/fs/btrfs/transaction.c ++++ b/fs/btrfs/transaction.c +@@ -1814,6 +1814,14 @@ int btrfs_commit_transaction(struct btrfs_trans_handle *trans, + struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode); + int ret; + ++ /* ++ * Some places just start a transaction to commit it. We need to make ++ * sure that if this commit fails that the abort code actually marks the ++ * transaction as failed, so set trans->dirty to make the abort code do ++ * the right thing. ++ */ ++ trans->dirty = true; ++ + /* Stop the commit early if ->aborted is set */ + if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { + ret = cur_trans->aborted; +diff --git a/fs/btrfs/tree-log.c b/fs/btrfs/tree-log.c +index f9c3907bf159..4320f346b0b9 100644 +--- a/fs/btrfs/tree-log.c ++++ b/fs/btrfs/tree-log.c +@@ -4404,13 +4404,8 @@ static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans, + struct btrfs_file_extent_item); + + if (btrfs_file_extent_type(leaf, extent) == +- BTRFS_FILE_EXTENT_INLINE) { +- len = btrfs_file_extent_inline_len(leaf, +- path->slots[0], +- extent); +- ASSERT(len == i_size); ++ BTRFS_FILE_EXTENT_INLINE) + return 0; +- } + + len = btrfs_file_extent_num_bytes(leaf, extent); + /* Last extent goes beyond i_size, no need to log a hole. */ +diff --git a/fs/cifs/smb2pdu.c b/fs/cifs/smb2pdu.c +index 84e60b3a5c7c..d4472a494758 100644 +--- a/fs/cifs/smb2pdu.c ++++ b/fs/cifs/smb2pdu.c +@@ -250,9 +250,14 @@ smb2_reconnect(__le16 smb2_command, struct cifs_tcon *tcon) + */ + mutex_lock(&tcon->ses->session_mutex); + rc = cifs_negotiate_protocol(0, tcon->ses); +- if (!rc && tcon->ses->need_reconnect) ++ if (!rc && tcon->ses->need_reconnect) { + rc = cifs_setup_session(0, tcon->ses, nls_codepage); +- ++ if ((rc == -EACCES) && !tcon->retry) { ++ rc = -EHOSTDOWN; ++ mutex_unlock(&tcon->ses->session_mutex); ++ goto failed; ++ } ++ } + if (rc || !tcon->need_reconnect) { + mutex_unlock(&tcon->ses->session_mutex); + goto out; +@@ -286,6 +291,7 @@ out: + case SMB2_SET_INFO: + rc = -EAGAIN; + } ++failed: + unload_nls(nls_codepage); + return rc; + } +diff --git a/fs/ext2/super.c b/fs/ext2/super.c +index 860024392969..0d44f7ef3c5d 100644 +--- a/fs/ext2/super.c ++++ b/fs/ext2/super.c +@@ -1051,9 +1051,9 @@ static int ext2_fill_super(struct super_block *sb, void *data, int silent) + + if (EXT2_BLOCKS_PER_GROUP(sb) == 0) + goto cantfind_ext2; +- sbi->s_groups_count = ((le32_to_cpu(es->s_blocks_count) - +- le32_to_cpu(es->s_first_data_block) - 1) +- / EXT2_BLOCKS_PER_GROUP(sb)) + 1; ++ sbi->s_groups_count = ((le32_to_cpu(es->s_blocks_count) - ++ le32_to_cpu(es->s_first_data_block) - 1) ++ / EXT2_BLOCKS_PER_GROUP(sb)) + 1; + db_count = (sbi->s_groups_count + EXT2_DESC_PER_BLOCK(sb) - 1) / + EXT2_DESC_PER_BLOCK(sb); + sbi->s_group_desc = kmalloc (db_count * sizeof (struct buffer_head *), GFP_KERNEL); +diff --git a/fs/nfs/callback_proc.c b/fs/nfs/callback_proc.c +index 807eb6ef4f91..6f4f68967c31 100644 +--- a/fs/nfs/callback_proc.c ++++ b/fs/nfs/callback_proc.c +@@ -368,7 +368,7 @@ static bool referring_call_exists(struct nfs_client *clp, + uint32_t nrclists, + struct referring_call_list *rclists) + { +- bool status = 0; ++ bool status = false; + int i, j; + struct nfs4_session *session; + struct nfs4_slot_table *tbl; +diff --git a/fs/nfs/dir.c b/fs/nfs/dir.c +index c690a1c0c4e5..2ac3d2527ad2 100644 +--- a/fs/nfs/dir.c ++++ b/fs/nfs/dir.c +@@ -169,6 +169,17 @@ typedef struct { + unsigned int eof:1; + } nfs_readdir_descriptor_t; + ++static ++void nfs_readdir_init_array(struct page *page) ++{ ++ struct nfs_cache_array *array; ++ ++ array = kmap_atomic(page); ++ memset(array, 0, sizeof(struct nfs_cache_array)); ++ array->eof_index = -1; ++ kunmap_atomic(array); ++} ++ + /* + * The caller is responsible for calling nfs_readdir_release_array(page) + */ +@@ -202,6 +213,7 @@ void nfs_readdir_clear_array(struct page *page) + array = kmap_atomic(page); + for (i = 0; i < array->size; i++) + kfree(array->array[i].string.name); ++ array->size = 0; + kunmap_atomic(array); + } + +@@ -277,7 +289,7 @@ int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descri + desc->cache_entry_index = index; + return 0; + out_eof: +- desc->eof = 1; ++ desc->eof = true; + return -EBADCOOKIE; + } + +@@ -331,7 +343,7 @@ int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_des + if (array->eof_index >= 0) { + status = -EBADCOOKIE; + if (*desc->dir_cookie == array->last_cookie) +- desc->eof = 1; ++ desc->eof = true; + } + out: + return status; +@@ -622,6 +634,8 @@ int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, + int status = -ENOMEM; + unsigned int array_size = ARRAY_SIZE(pages); + ++ nfs_readdir_init_array(page); ++ + entry.prev_cookie = 0; + entry.cookie = desc->last_cookie; + entry.eof = 0; +@@ -642,8 +656,8 @@ int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, + status = PTR_ERR(array); + goto out_label_free; + } +- memset(array, 0, sizeof(struct nfs_cache_array)); +- array->eof_index = -1; ++ ++ array = kmap(page); + + status = nfs_readdir_alloc_pages(pages, array_size); + if (status < 0) +@@ -698,6 +712,7 @@ int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page) + unlock_page(page); + return 0; + error: ++ nfs_readdir_clear_array(page); + unlock_page(page); + return ret; + } +@@ -705,8 +720,6 @@ int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page) + static + void cache_page_release(nfs_readdir_descriptor_t *desc) + { +- if (!desc->page->mapping) +- nfs_readdir_clear_array(desc->page); + page_cache_release(desc->page); + desc->page = NULL; + } +@@ -720,19 +733,28 @@ struct page *get_cache_page(nfs_readdir_descriptor_t *desc) + + /* + * Returns 0 if desc->dir_cookie was found on page desc->page_index ++ * and locks the page to prevent removal from the page cache. + */ + static +-int find_cache_page(nfs_readdir_descriptor_t *desc) ++int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc) + { + int res; + + desc->page = get_cache_page(desc); + if (IS_ERR(desc->page)) + return PTR_ERR(desc->page); +- +- res = nfs_readdir_search_array(desc); ++ res = lock_page_killable(desc->page); + if (res != 0) +- cache_page_release(desc); ++ goto error; ++ res = -EAGAIN; ++ if (desc->page->mapping != NULL) { ++ res = nfs_readdir_search_array(desc); ++ if (res == 0) ++ return 0; ++ } ++ unlock_page(desc->page); ++error: ++ cache_page_release(desc); + return res; + } + +@@ -747,7 +769,7 @@ int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) + desc->last_cookie = 0; + } + do { +- res = find_cache_page(desc); ++ res = find_and_lock_cache_page(desc); + } while (res == -EAGAIN); + return res; + } +@@ -776,7 +798,7 @@ int nfs_do_filldir(nfs_readdir_descriptor_t *desc) + ent = &array->array[i]; + if (!dir_emit(desc->ctx, ent->string.name, ent->string.len, + nfs_compat_user_ino64(ent->ino), ent->d_type)) { +- desc->eof = 1; ++ desc->eof = true; + break; + } + desc->ctx->pos++; +@@ -788,11 +810,10 @@ int nfs_do_filldir(nfs_readdir_descriptor_t *desc) + ctx->duped = 1; + } + if (array->eof_index >= 0) +- desc->eof = 1; ++ desc->eof = true; + + nfs_readdir_release_array(desc->page); + out: +- cache_page_release(desc); + dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", + (unsigned long long)*desc->dir_cookie, res); + return res; +@@ -838,13 +859,13 @@ int uncached_readdir(nfs_readdir_descriptor_t *desc) + + status = nfs_do_filldir(desc); + ++ out_release: ++ nfs_readdir_clear_array(desc->page); ++ cache_page_release(desc); + out: + dfprintk(DIRCACHE, "NFS: %s: returns %d\n", + __func__, status); + return status; +- out_release: +- cache_page_release(desc); +- goto out; + } + + /* The file offset position represents the dirent entry number. A +@@ -890,7 +911,7 @@ static int nfs_readdir(struct file *file, struct dir_context *ctx) + if (res == -EBADCOOKIE) { + res = 0; + /* This means either end of directory */ +- if (*desc->dir_cookie && desc->eof == 0) { ++ if (*desc->dir_cookie && !desc->eof) { + /* Or that the server has 'lost' a cookie */ + res = uncached_readdir(desc); + if (res == 0) +@@ -910,6 +931,8 @@ static int nfs_readdir(struct file *file, struct dir_context *ctx) + break; + + res = nfs_do_filldir(desc); ++ unlock_page(desc->page); ++ cache_page_release(desc); + if (res < 0) + break; + } while (!desc->eof); +diff --git a/fs/nfs/nfs4client.c b/fs/nfs/nfs4client.c +index dac20f31f01f..92895f41d9a0 100644 +--- a/fs/nfs/nfs4client.c ++++ b/fs/nfs/nfs4client.c +@@ -751,7 +751,7 @@ nfs4_find_client_sessionid(struct net *net, const struct sockaddr *addr, + + spin_lock(&nn->nfs_client_lock); + list_for_each_entry(clp, &nn->nfs_client_list, cl_share_link) { +- if (nfs4_cb_match_client(addr, clp, minorversion) == false) ++ if (!nfs4_cb_match_client(addr, clp, minorversion)) + continue; + + if (!nfs4_has_session(clp)) +diff --git a/fs/overlayfs/inode.c b/fs/overlayfs/inode.c +index 060482e349ef..013d27dc6f58 100644 +--- a/fs/overlayfs/inode.c ++++ b/fs/overlayfs/inode.c +@@ -9,7 +9,6 @@ + + #include <linux/fs.h> + #include <linux/slab.h> +-#include <linux/cred.h> + #include <linux/xattr.h> + #include "overlayfs.h" + +@@ -92,7 +91,6 @@ int ovl_permission(struct inode *inode, int mask) + struct ovl_entry *oe; + struct dentry *alias = NULL; + struct inode *realinode; +- const struct cred *old_cred; + struct dentry *realdentry; + bool is_upper; + int err; +@@ -145,18 +143,7 @@ int ovl_permission(struct inode *inode, int mask) + goto out_dput; + } + +- /* +- * Check overlay inode with the creds of task and underlying inode +- * with creds of mounter +- */ +- err = generic_permission(inode, mask); +- if (err) +- goto out_dput; +- +- old_cred = ovl_override_creds(inode->i_sb); + err = __inode_permission(realinode, mask); +- revert_creds(old_cred); +- + out_dput: + dput(alias); + return err; +diff --git a/kernel/events/core.c b/kernel/events/core.c +index a7014f854e67..203384a71fee 100644 +--- a/kernel/events/core.c ++++ b/kernel/events/core.c +@@ -4887,7 +4887,15 @@ accounting: + */ + user_lock_limit *= num_online_cpus(); + +- user_locked = atomic_long_read(&user->locked_vm) + user_extra; ++ user_locked = atomic_long_read(&user->locked_vm); ++ ++ /* ++ * sysctl_perf_event_mlock may have changed, so that ++ * user->locked_vm > user_lock_limit ++ */ ++ if (user_locked > user_lock_limit) ++ user_locked = user_lock_limit; ++ user_locked += user_extra; + + if (user_locked > user_lock_limit) + extra = user_locked - user_lock_limit; +diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c +index b98810d2f3b4..a20368e1a720 100644 +--- a/kernel/time/clocksource.c ++++ b/kernel/time/clocksource.c +@@ -272,8 +272,15 @@ static void clocksource_watchdog(unsigned long data) + next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask); + if (next_cpu >= nr_cpu_ids) + next_cpu = cpumask_first(cpu_online_mask); +- watchdog_timer.expires += WATCHDOG_INTERVAL; +- add_timer_on(&watchdog_timer, next_cpu); ++ ++ /* ++ * Arm timer if not already pending: could race with concurrent ++ * pair clocksource_stop_watchdog() clocksource_start_watchdog(). ++ */ ++ if (!timer_pending(&watchdog_timer)) { ++ watchdog_timer.expires += WATCHDOG_INTERVAL; ++ add_timer_on(&watchdog_timer, next_cpu); ++ } + out: + spin_unlock(&watchdog_lock); + } +diff --git a/lib/test_kasan.c b/lib/test_kasan.c +index c32f3b0048dc..275ff0b5162e 100644 +--- a/lib/test_kasan.c ++++ b/lib/test_kasan.c +@@ -93,6 +93,7 @@ static noinline void __init kmalloc_oob_krealloc_more(void) + if (!ptr1 || !ptr2) { + pr_err("Allocation failed\n"); + kfree(ptr1); ++ kfree(ptr2); + return; + } + +diff --git a/net/hsr/hsr_slave.c b/net/hsr/hsr_slave.c +index 7d37366cc695..7992c533e6f7 100644 +--- a/net/hsr/hsr_slave.c ++++ b/net/hsr/hsr_slave.c +@@ -30,6 +30,8 @@ static rx_handler_result_t hsr_handle_frame(struct sk_buff **pskb) + + rcu_read_lock(); /* hsr->node_db, hsr->ports */ + port = hsr_port_get_rcu(skb->dev); ++ if (!port) ++ goto finish_pass; + + if (hsr_addr_is_self(port->hsr, eth_hdr(skb)->h_source)) { + /* Directly kill frames sent by ourselves */ +diff --git a/net/ipv4/tcp.c b/net/ipv4/tcp.c +index 8e303cd7e2de..2ceda7ddaed5 100644 +--- a/net/ipv4/tcp.c ++++ b/net/ipv4/tcp.c +@@ -2261,6 +2261,7 @@ int tcp_disconnect(struct sock *sk, int flags) + tp->window_clamp = 0; + tcp_set_ca_state(sk, TCP_CA_Open); + tcp_clear_retrans(tp); ++ tp->total_retrans = 0; + inet_csk_delack_init(sk); + /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 + * issue in __tcp_select_window() +@@ -2272,6 +2273,8 @@ int tcp_disconnect(struct sock *sk, int flags) + dst_release(sk->sk_rx_dst); + sk->sk_rx_dst = NULL; + tcp_saved_syn_free(tp); ++ tp->segs_in = 0; ++ tp->segs_out = 0; + tp->bytes_acked = 0; + tp->bytes_received = 0; + +diff --git a/net/sched/cls_rsvp.h b/net/sched/cls_rsvp.h +index 9992dfac6938..7317a64fdb79 100644 +--- a/net/sched/cls_rsvp.h ++++ b/net/sched/cls_rsvp.h +@@ -455,10 +455,8 @@ static u32 gen_tunnel(struct rsvp_head *data) + + static const struct nla_policy rsvp_policy[TCA_RSVP_MAX + 1] = { + [TCA_RSVP_CLASSID] = { .type = NLA_U32 }, +- [TCA_RSVP_DST] = { .type = NLA_BINARY, +- .len = RSVP_DST_LEN * sizeof(u32) }, +- [TCA_RSVP_SRC] = { .type = NLA_BINARY, +- .len = RSVP_DST_LEN * sizeof(u32) }, ++ [TCA_RSVP_DST] = { .len = RSVP_DST_LEN * sizeof(u32) }, ++ [TCA_RSVP_SRC] = { .len = RSVP_DST_LEN * sizeof(u32) }, + [TCA_RSVP_PINFO] = { .len = sizeof(struct tc_rsvp_pinfo) }, + }; + +diff --git a/net/sched/cls_tcindex.c b/net/sched/cls_tcindex.c +index 040d853f48b9..3086df21a1c1 100644 +--- a/net/sched/cls_tcindex.c ++++ b/net/sched/cls_tcindex.c +@@ -267,6 +267,25 @@ tcindex_set_parms(struct net *net, struct tcf_proto *tp, unsigned long base, + cp->fall_through = p->fall_through; + cp->tp = tp; + ++ if (tb[TCA_TCINDEX_HASH]) ++ cp->hash = nla_get_u32(tb[TCA_TCINDEX_HASH]); ++ ++ if (tb[TCA_TCINDEX_MASK]) ++ cp->mask = nla_get_u16(tb[TCA_TCINDEX_MASK]); ++ ++ if (tb[TCA_TCINDEX_SHIFT]) ++ cp->shift = nla_get_u32(tb[TCA_TCINDEX_SHIFT]); ++ ++ if (!cp->hash) { ++ /* Hash not specified, use perfect hash if the upper limit ++ * of the hashing index is below the threshold. ++ */ ++ if ((cp->mask >> cp->shift) < PERFECT_HASH_THRESHOLD) ++ cp->hash = (cp->mask >> cp->shift) + 1; ++ else ++ cp->hash = DEFAULT_HASH_SIZE; ++ } ++ + if (p->perfect) { + int i; + +@@ -274,7 +293,7 @@ tcindex_set_parms(struct net *net, struct tcf_proto *tp, unsigned long base, + sizeof(*r) * cp->hash, GFP_KERNEL); + if (!cp->perfect) + goto errout; +- for (i = 0; i < cp->hash; i++) ++ for (i = 0; i < min(cp->hash, p->hash); i++) + tcf_exts_init(&cp->perfect[i].exts, + TCA_TCINDEX_ACT, TCA_TCINDEX_POLICE); + balloc = 1; +@@ -286,15 +305,6 @@ tcindex_set_parms(struct net *net, struct tcf_proto *tp, unsigned long base, + if (old_r) + cr.res = r->res; + +- if (tb[TCA_TCINDEX_HASH]) +- cp->hash = nla_get_u32(tb[TCA_TCINDEX_HASH]); +- +- if (tb[TCA_TCINDEX_MASK]) +- cp->mask = nla_get_u16(tb[TCA_TCINDEX_MASK]); +- +- if (tb[TCA_TCINDEX_SHIFT]) +- cp->shift = nla_get_u32(tb[TCA_TCINDEX_SHIFT]); +- + err = -EBUSY; + + /* Hash already allocated, make sure that we still meet the +@@ -312,16 +322,6 @@ tcindex_set_parms(struct net *net, struct tcf_proto *tp, unsigned long base, + if (tb[TCA_TCINDEX_FALL_THROUGH]) + cp->fall_through = nla_get_u32(tb[TCA_TCINDEX_FALL_THROUGH]); + +- if (!cp->hash) { +- /* Hash not specified, use perfect hash if the upper limit +- * of the hashing index is below the threshold. +- */ +- if ((cp->mask >> cp->shift) < PERFECT_HASH_THRESHOLD) +- cp->hash = (cp->mask >> cp->shift) + 1; +- else +- cp->hash = DEFAULT_HASH_SIZE; +- } +- + if (!cp->perfect && !cp->h) + cp->alloc_hash = cp->hash; + +diff --git a/net/sunrpc/auth_gss/svcauth_gss.c b/net/sunrpc/auth_gss/svcauth_gss.c +index b5291ea54a3d..c1d1abde7072 100644 +--- a/net/sunrpc/auth_gss/svcauth_gss.c ++++ b/net/sunrpc/auth_gss/svcauth_gss.c +@@ -1173,6 +1173,7 @@ static int gss_proxy_save_rsc(struct cache_detail *cd, + dprintk("RPC: No creds found!\n"); + goto out; + } else { ++ struct timespec64 boot; + + /* steal creds */ + rsci.cred = ud->creds; +@@ -1193,6 +1194,9 @@ static int gss_proxy_save_rsc(struct cache_detail *cd, + &expiry, GFP_KERNEL); + if (status) + goto out; ++ ++ getboottime64(&boot); ++ expiry -= boot.tv_sec; + } + + rsci.h.expiry_time = expiry; +diff --git a/sound/drivers/dummy.c b/sound/drivers/dummy.c +index 67628616506e..e7dd0800965a 100644 +--- a/sound/drivers/dummy.c ++++ b/sound/drivers/dummy.c +@@ -925,7 +925,7 @@ static void print_formats(struct snd_dummy *dummy, + { + int i; + +- for (i = 0; i < SNDRV_PCM_FORMAT_LAST; i++) { ++ for (i = 0; i <= SNDRV_PCM_FORMAT_LAST; i++) { + if (dummy->pcm_hw.formats & (1ULL << i)) + snd_iprintf(buffer, " %s", snd_pcm_format_name(i)); + } +diff --git a/sound/soc/qcom/apq8016_sbc.c b/sound/soc/qcom/apq8016_sbc.c +index 886f2027e671..f2c71bcd06fa 100644 +--- a/sound/soc/qcom/apq8016_sbc.c ++++ b/sound/soc/qcom/apq8016_sbc.c +@@ -112,7 +112,8 @@ static struct apq8016_sbc_data *apq8016_sbc_parse_of(struct snd_soc_card *card) + link->codec_of_node = of_parse_phandle(codec, "sound-dai", 0); + if (!link->codec_of_node) { + dev_err(card->dev, "error getting codec phandle\n"); +- return ERR_PTR(-EINVAL); ++ ret = -EINVAL; ++ goto error; + } + + ret = snd_soc_of_get_dai_name(cpu, &link->cpu_dai_name); +diff --git a/sound/soc/soc-pcm.c b/sound/soc/soc-pcm.c +index dbdea1975f90..81bedd9bb922 100644 +--- a/sound/soc/soc-pcm.c ++++ b/sound/soc/soc-pcm.c +@@ -2026,42 +2026,81 @@ int dpcm_be_dai_trigger(struct snd_soc_pcm_runtime *fe, int stream, + } + EXPORT_SYMBOL_GPL(dpcm_be_dai_trigger); + ++static int dpcm_dai_trigger_fe_be(struct snd_pcm_substream *substream, ++ int cmd, bool fe_first) ++{ ++ struct snd_soc_pcm_runtime *fe = substream->private_data; ++ int ret; ++ ++ /* call trigger on the frontend before the backend. */ ++ if (fe_first) { ++ dev_dbg(fe->dev, "ASoC: pre trigger FE %s cmd %d\n", ++ fe->dai_link->name, cmd); ++ ++ ret = soc_pcm_trigger(substream, cmd); ++ if (ret < 0) ++ return ret; ++ ++ ret = dpcm_be_dai_trigger(fe, substream->stream, cmd); ++ return ret; ++ } ++ ++ /* call trigger on the frontend after the backend. */ ++ ret = dpcm_be_dai_trigger(fe, substream->stream, cmd); ++ if (ret < 0) ++ return ret; ++ ++ dev_dbg(fe->dev, "ASoC: post trigger FE %s cmd %d\n", ++ fe->dai_link->name, cmd); ++ ++ ret = soc_pcm_trigger(substream, cmd); ++ ++ return ret; ++} ++ + static int dpcm_fe_dai_do_trigger(struct snd_pcm_substream *substream, int cmd) + { + struct snd_soc_pcm_runtime *fe = substream->private_data; +- int stream = substream->stream, ret; ++ int stream = substream->stream; ++ int ret = 0; + enum snd_soc_dpcm_trigger trigger = fe->dai_link->trigger[stream]; + + fe->dpcm[stream].runtime_update = SND_SOC_DPCM_UPDATE_FE; + + switch (trigger) { + case SND_SOC_DPCM_TRIGGER_PRE: +- /* call trigger on the frontend before the backend. */ +- +- dev_dbg(fe->dev, "ASoC: pre trigger FE %s cmd %d\n", +- fe->dai_link->name, cmd); +- +- ret = soc_pcm_trigger(substream, cmd); +- if (ret < 0) { +- dev_err(fe->dev,"ASoC: trigger FE failed %d\n", ret); +- goto out; ++ switch (cmd) { ++ case SNDRV_PCM_TRIGGER_START: ++ case SNDRV_PCM_TRIGGER_RESUME: ++ case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: ++ ret = dpcm_dai_trigger_fe_be(substream, cmd, true); ++ break; ++ case SNDRV_PCM_TRIGGER_STOP: ++ case SNDRV_PCM_TRIGGER_SUSPEND: ++ case SNDRV_PCM_TRIGGER_PAUSE_PUSH: ++ ret = dpcm_dai_trigger_fe_be(substream, cmd, false); ++ break; ++ default: ++ ret = -EINVAL; ++ break; + } +- +- ret = dpcm_be_dai_trigger(fe, substream->stream, cmd); + break; + case SND_SOC_DPCM_TRIGGER_POST: +- /* call trigger on the frontend after the backend. */ +- +- ret = dpcm_be_dai_trigger(fe, substream->stream, cmd); +- if (ret < 0) { +- dev_err(fe->dev,"ASoC: trigger FE failed %d\n", ret); +- goto out; ++ switch (cmd) { ++ case SNDRV_PCM_TRIGGER_START: ++ case SNDRV_PCM_TRIGGER_RESUME: ++ case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: ++ ret = dpcm_dai_trigger_fe_be(substream, cmd, false); ++ break; ++ case SNDRV_PCM_TRIGGER_STOP: ++ case SNDRV_PCM_TRIGGER_SUSPEND: ++ case SNDRV_PCM_TRIGGER_PAUSE_PUSH: ++ ret = dpcm_dai_trigger_fe_be(substream, cmd, true); ++ break; ++ default: ++ ret = -EINVAL; ++ break; + } +- +- dev_dbg(fe->dev, "ASoC: post trigger FE %s cmd %d\n", +- fe->dai_link->name, cmd); +- +- ret = soc_pcm_trigger(substream, cmd); + break; + case SND_SOC_DPCM_TRIGGER_BESPOKE: + /* bespoke trigger() - handles both FE and BEs */ +@@ -2070,10 +2109,6 @@ static int dpcm_fe_dai_do_trigger(struct snd_pcm_substream *substream, int cmd) + fe->dai_link->name, cmd); + + ret = soc_pcm_bespoke_trigger(substream, cmd); +- if (ret < 0) { +- dev_err(fe->dev,"ASoC: trigger FE failed %d\n", ret); +- goto out; +- } + break; + default: + dev_err(fe->dev, "ASoC: invalid trigger cmd %d for %s\n", cmd, +@@ -2082,6 +2117,12 @@ static int dpcm_fe_dai_do_trigger(struct snd_pcm_substream *substream, int cmd) + goto out; + } + ++ if (ret < 0) { ++ dev_err(fe->dev, "ASoC: trigger FE cmd: %d failed: %d\n", ++ cmd, ret); ++ goto out; ++ } ++ + switch (cmd) { + case SNDRV_PCM_TRIGGER_START: + case SNDRV_PCM_TRIGGER_RESUME: |