aboutsummaryrefslogtreecommitdiff
blob: 5990126bc7a5d276132c9b231165839c161565eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
/* Target-dependent code for the Renesas RX for GDB, the GNU debugger.

   Copyright (C) 2008-2012 Free Software Foundation, Inc.

   Contributed by Red Hat, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "arch-utils.h"
#include "prologue-value.h"
#include "target.h"
#include "regcache.h"
#include "opcode/rx.h"
#include "dis-asm.h"
#include "gdbtypes.h"
#include "frame.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "value.h"
#include "gdbcore.h"
#include "dwarf2-frame.h"

#include "elf/rx.h"
#include "elf-bfd.h"

/* Certain important register numbers.  */
enum
{
  RX_SP_REGNUM = 0,
  RX_R1_REGNUM = 1,
  RX_R4_REGNUM = 4,
  RX_FP_REGNUM = 6,
  RX_R15_REGNUM = 15,
  RX_PC_REGNUM = 19,
  RX_ACC_REGNUM = 25,
  RX_NUM_REGS = 26
};

/* Architecture specific data.  */
struct gdbarch_tdep
{
  /* The ELF header flags specify the multilib used.  */
  int elf_flags;
};

/* This structure holds the results of a prologue analysis.  */
struct rx_prologue
{
  /* The offset from the frame base to the stack pointer --- always
     zero or negative.

     Calling this a "size" is a bit misleading, but given that the
     stack grows downwards, using offsets for everything keeps one
     from going completely sign-crazy: you never change anything's
     sign for an ADD instruction; always change the second operand's
     sign for a SUB instruction; and everything takes care of
     itself.  */
  int frame_size;

  /* Non-zero if this function has initialized the frame pointer from
     the stack pointer, zero otherwise.  */
  int has_frame_ptr;

  /* If has_frame_ptr is non-zero, this is the offset from the frame
     base to where the frame pointer points.  This is always zero or
     negative.  */
  int frame_ptr_offset;

  /* The address of the first instruction at which the frame has been
     set up and the arguments are where the debug info says they are
     --- as best as we can tell.  */
  CORE_ADDR prologue_end;

  /* reg_offset[R] is the offset from the CFA at which register R is
     saved, or 1 if register R has not been saved.  (Real values are
     always zero or negative.)  */
  int reg_offset[RX_NUM_REGS];
};

/* Implement the "register_name" gdbarch method.  */
static const char *
rx_register_name (struct gdbarch *gdbarch, int regnr)
{
  static const char *const reg_names[] = {
    "r0",
    "r1",
    "r2",
    "r3",
    "r4",
    "r5",
    "r6",
    "r7",
    "r8",
    "r9",
    "r10",
    "r11",
    "r12",
    "r13",
    "r14",
    "r15",
    "usp",
    "isp",
    "psw",
    "pc",
    "intb",
    "bpsw",
    "bpc",
    "fintv",
    "fpsw",
    "acc"
  };

  return reg_names[regnr];
}

/* Implement the "register_type" gdbarch method.  */
static struct type *
rx_register_type (struct gdbarch *gdbarch, int reg_nr)
{
  if (reg_nr == RX_PC_REGNUM)
    return builtin_type (gdbarch)->builtin_func_ptr;
  else if (reg_nr == RX_ACC_REGNUM)
    return builtin_type (gdbarch)->builtin_unsigned_long_long;
  else
    return builtin_type (gdbarch)->builtin_unsigned_long;
}


/* Function for finding saved registers in a 'struct pv_area'; this
   function is passed to pv_area_scan.

   If VALUE is a saved register, ADDR says it was saved at a constant
   offset from the frame base, and SIZE indicates that the whole
   register was saved, record its offset.  */
static void
check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
{
  struct rx_prologue *result = (struct rx_prologue *) result_untyped;

  if (value.kind == pvk_register
      && value.k == 0
      && pv_is_register (addr, RX_SP_REGNUM)
      && size == register_size (target_gdbarch (), value.reg))
    result->reg_offset[value.reg] = addr.k;
}

/* Define a "handle" struct for fetching the next opcode.  */
struct rx_get_opcode_byte_handle
{
  CORE_ADDR pc;
};

/* Fetch a byte on behalf of the opcode decoder.  HANDLE contains
   the memory address of the next byte to fetch.  If successful,
   the address in the handle is updated and the byte fetched is
   returned as the value of the function.  If not successful, -1
   is returned.  */
static int
rx_get_opcode_byte (void *handle)
{
  struct rx_get_opcode_byte_handle *opcdata = handle;
  int status;
  gdb_byte byte;

  status = target_read_memory (opcdata->pc, &byte, 1);
  if (status == 0)
    {
      opcdata->pc += 1;
      return byte;
    }
  else
    return -1;
}

/* Analyze a prologue starting at START_PC, going no further than
   LIMIT_PC.  Fill in RESULT as appropriate.  */
static void
rx_analyze_prologue (CORE_ADDR start_pc,
		     CORE_ADDR limit_pc, struct rx_prologue *result)
{
  CORE_ADDR pc, next_pc;
  int rn;
  pv_t reg[RX_NUM_REGS];
  struct pv_area *stack;
  struct cleanup *back_to;
  CORE_ADDR after_last_frame_setup_insn = start_pc;

  memset (result, 0, sizeof (*result));

  for (rn = 0; rn < RX_NUM_REGS; rn++)
    {
      reg[rn] = pv_register (rn, 0);
      result->reg_offset[rn] = 1;
    }

  stack = make_pv_area (RX_SP_REGNUM, gdbarch_addr_bit (target_gdbarch ()));
  back_to = make_cleanup_free_pv_area (stack);

  /* The call instruction has saved the return address on the stack.  */
  reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
  pv_area_store (stack, reg[RX_SP_REGNUM], 4, reg[RX_PC_REGNUM]);

  pc = start_pc;
  while (pc < limit_pc)
    {
      int bytes_read;
      struct rx_get_opcode_byte_handle opcode_handle;
      RX_Opcode_Decoded opc;

      opcode_handle.pc = pc;
      bytes_read = rx_decode_opcode (pc, &opc, rx_get_opcode_byte,
				     &opcode_handle);
      next_pc = pc + bytes_read;

      if (opc.id == RXO_pushm	/* pushm r1, r2 */
	  && opc.op[1].type == RX_Operand_Register
	  && opc.op[2].type == RX_Operand_Register)
	{
	  int r1, r2;
	  int r;

	  r1 = opc.op[1].reg;
	  r2 = opc.op[2].reg;
	  for (r = r2; r >= r1; r--)
	    {
	      reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
	      pv_area_store (stack, reg[RX_SP_REGNUM], 4, reg[r]);
	    }
	  after_last_frame_setup_insn = next_pc;
	}
      else if (opc.id == RXO_mov	/* mov.l rdst, rsrc */
	       && opc.op[0].type == RX_Operand_Register
	       && opc.op[1].type == RX_Operand_Register
	       && opc.size == RX_Long)
	{
	  int rdst, rsrc;

	  rdst = opc.op[0].reg;
	  rsrc = opc.op[1].reg;
	  reg[rdst] = reg[rsrc];
	  if (rdst == RX_FP_REGNUM && rsrc == RX_SP_REGNUM)
	    after_last_frame_setup_insn = next_pc;
	}
      else if (opc.id == RXO_mov	/* mov.l rsrc, [-SP] */
	       && opc.op[0].type == RX_Operand_Predec
	       && opc.op[0].reg == RX_SP_REGNUM
	       && opc.op[1].type == RX_Operand_Register
	       && opc.size == RX_Long)
	{
	  int rsrc;

	  rsrc = opc.op[1].reg;
	  reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
	  pv_area_store (stack, reg[RX_SP_REGNUM], 4, reg[rsrc]);
	  after_last_frame_setup_insn = next_pc;
	}
      else if (opc.id == RXO_add	/* add #const, rsrc, rdst */
	       && opc.op[0].type == RX_Operand_Register
	       && opc.op[1].type == RX_Operand_Immediate
	       && opc.op[2].type == RX_Operand_Register)
	{
	  int rdst = opc.op[0].reg;
	  int addend = opc.op[1].addend;
	  int rsrc = opc.op[2].reg;
	  reg[rdst] = pv_add_constant (reg[rsrc], addend);
	  /* Negative adjustments to the stack pointer or frame pointer
	     are (most likely) part of the prologue.  */
	  if ((rdst == RX_SP_REGNUM || rdst == RX_FP_REGNUM) && addend < 0)
	    after_last_frame_setup_insn = next_pc;
	}
      else if (opc.id == RXO_mov
	       && opc.op[0].type == RX_Operand_Indirect
	       && opc.op[1].type == RX_Operand_Register
	       && opc.size == RX_Long
	       && (opc.op[0].reg == RX_SP_REGNUM
		   || opc.op[0].reg == RX_FP_REGNUM)
	       && (RX_R1_REGNUM <= opc.op[1].reg
		   && opc.op[1].reg <= RX_R4_REGNUM))
	{
	  /* This moves an argument register to the stack.  Don't
	     record it, but allow it to be a part of the prologue.  */
	}
      else if (opc.id == RXO_branch
	       && opc.op[0].type == RX_Operand_Immediate
	       && next_pc < opc.op[0].addend)
	{
	  /* When a loop appears as the first statement of a function
	     body, gcc 4.x will use a BRA instruction to branch to the
	     loop condition checking code.  This BRA instruction is
	     marked as part of the prologue.  We therefore set next_pc
	     to this branch target and also stop the prologue scan.
	     The instructions at and beyond the branch target should
	     no longer be associated with the prologue.

	     Note that we only consider forward branches here.  We
	     presume that a forward branch is being used to skip over
	     a loop body.

	     A backwards branch is covered by the default case below.
	     If we were to encounter a backwards branch, that would
	     most likely mean that we've scanned through a loop body.
	     We definitely want to stop the prologue scan when this
	     happens and that is precisely what is done by the default
	     case below.  */

	  after_last_frame_setup_insn = opc.op[0].addend;
	  break;		/* Scan no further if we hit this case.  */
	}
      else
	{
	  /* Terminate the prologue scan.  */
	  break;
	}

      pc = next_pc;
    }

  /* Is the frame size (offset, really) a known constant?  */
  if (pv_is_register (reg[RX_SP_REGNUM], RX_SP_REGNUM))
    result->frame_size = reg[RX_SP_REGNUM].k;

  /* Was the frame pointer initialized?  */
  if (pv_is_register (reg[RX_FP_REGNUM], RX_SP_REGNUM))
    {
      result->has_frame_ptr = 1;
      result->frame_ptr_offset = reg[RX_FP_REGNUM].k;
    }

  /* Record where all the registers were saved.  */
  pv_area_scan (stack, check_for_saved, (void *) result);

  result->prologue_end = after_last_frame_setup_insn;

  do_cleanups (back_to);
}


/* Implement the "skip_prologue" gdbarch method.  */
static CORE_ADDR
rx_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  const char *name;
  CORE_ADDR func_addr, func_end;
  struct rx_prologue p;

  /* Try to find the extent of the function that contains PC.  */
  if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
    return pc;

  rx_analyze_prologue (pc, func_end, &p);
  return p.prologue_end;
}

/* Given a frame described by THIS_FRAME, decode the prologue of its
   associated function if there is not cache entry as specified by
   THIS_PROLOGUE_CACHE.  Save the decoded prologue in the cache and
   return that struct as the value of this function.  */
static struct rx_prologue *
rx_analyze_frame_prologue (struct frame_info *this_frame,
			   void **this_prologue_cache)
{
  if (!*this_prologue_cache)
    {
      CORE_ADDR func_start, stop_addr;

      *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rx_prologue);

      func_start = get_frame_func (this_frame);
      stop_addr = get_frame_pc (this_frame);

      /* If we couldn't find any function containing the PC, then
         just initialize the prologue cache, but don't do anything.  */
      if (!func_start)
	stop_addr = func_start;

      rx_analyze_prologue (func_start, stop_addr, *this_prologue_cache);
    }

  return *this_prologue_cache;
}

/* Given the next frame and a prologue cache, return this frame's
   base.  */
static CORE_ADDR
rx_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
{
  struct rx_prologue *p
    = rx_analyze_frame_prologue (this_frame, this_prologue_cache);

  /* In functions that use alloca, the distance between the stack
     pointer and the frame base varies dynamically, so we can't use
     the SP plus static information like prologue analysis to find the
     frame base.  However, such functions must have a frame pointer,
     to be able to restore the SP on exit.  So whenever we do have a
     frame pointer, use that to find the base.  */
  if (p->has_frame_ptr)
    {
      CORE_ADDR fp = get_frame_register_unsigned (this_frame, RX_FP_REGNUM);
      return fp - p->frame_ptr_offset;
    }
  else
    {
      CORE_ADDR sp = get_frame_register_unsigned (this_frame, RX_SP_REGNUM);
      return sp - p->frame_size;
    }
}

/* Implement the "frame_this_id" method for unwinding frames.  */
static void
rx_frame_this_id (struct frame_info *this_frame,
		  void **this_prologue_cache, struct frame_id *this_id)
{
  *this_id = frame_id_build (rx_frame_base (this_frame, this_prologue_cache),
			     get_frame_func (this_frame));
}

/* Implement the "frame_prev_register" method for unwinding frames.  */
static struct value *
rx_frame_prev_register (struct frame_info *this_frame,
			void **this_prologue_cache, int regnum)
{
  struct rx_prologue *p
    = rx_analyze_frame_prologue (this_frame, this_prologue_cache);
  CORE_ADDR frame_base = rx_frame_base (this_frame, this_prologue_cache);
  int reg_size = register_size (get_frame_arch (this_frame), regnum);

  if (regnum == RX_SP_REGNUM)
    return frame_unwind_got_constant (this_frame, regnum, frame_base);

  /* If prologue analysis says we saved this register somewhere,
     return a description of the stack slot holding it.  */
  else if (p->reg_offset[regnum] != 1)
    return frame_unwind_got_memory (this_frame, regnum,
				    frame_base + p->reg_offset[regnum]);

  /* Otherwise, presume we haven't changed the value of this
     register, and get it from the next frame.  */
  else
    return frame_unwind_got_register (this_frame, regnum, regnum);
}

static const struct frame_unwind rx_frame_unwind = {
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  rx_frame_this_id,
  rx_frame_prev_register,
  NULL,
  default_frame_sniffer
};

/* Implement the "unwind_pc" gdbarch method.  */
static CORE_ADDR
rx_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
  ULONGEST pc;

  pc = frame_unwind_register_unsigned (this_frame, RX_PC_REGNUM);
  return pc;
}

/* Implement the "unwind_sp" gdbarch method.  */
static CORE_ADDR
rx_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
  ULONGEST sp;

  sp = frame_unwind_register_unsigned (this_frame, RX_SP_REGNUM);
  return sp;
}

/* Implement the "dummy_id" gdbarch method.  */
static struct frame_id
rx_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
  return
    frame_id_build (get_frame_register_unsigned (this_frame, RX_SP_REGNUM),
		    get_frame_pc (this_frame));
}

/* Implement the "push_dummy_call" gdbarch method.  */
static CORE_ADDR
rx_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
		    struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
		    struct value **args, CORE_ADDR sp, int struct_return,
		    CORE_ADDR struct_addr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int write_pass;
  int sp_off = 0;
  CORE_ADDR cfa;
  int num_register_candidate_args;

  struct type *func_type = value_type (function);

  /* Dereference function pointer types.  */
  while (TYPE_CODE (func_type) == TYPE_CODE_PTR)
    func_type = TYPE_TARGET_TYPE (func_type);

  /* The end result had better be a function or a method.  */
  gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
	      || TYPE_CODE (func_type) == TYPE_CODE_METHOD);

  /* Functions with a variable number of arguments have all of their
     variable arguments and the last non-variable argument passed
     on the stack.

     Otherwise, we can pass up to four arguments on the stack.

     Once computed, we leave this value alone.  I.e. we don't update
     it in case of a struct return going in a register or an argument
     requiring multiple registers, etc.  We rely instead on the value
     of the ``arg_reg'' variable to get these other details correct.  */

  if (TYPE_VARARGS (func_type))
    num_register_candidate_args = TYPE_NFIELDS (func_type) - 1;
  else
    num_register_candidate_args = 4;

  /* We make two passes; the first does the stack allocation,
     the second actually stores the arguments.  */
  for (write_pass = 0; write_pass <= 1; write_pass++)
    {
      int i;
      int arg_reg = RX_R1_REGNUM;

      if (write_pass)
	sp = align_down (sp - sp_off, 4);
      sp_off = 0;

      if (struct_return)
	{
	  struct type *return_type = TYPE_TARGET_TYPE (func_type);

	  gdb_assert (TYPE_CODE (return_type) == TYPE_CODE_STRUCT
		      || TYPE_CODE (func_type) == TYPE_CODE_UNION);

	  if (TYPE_LENGTH (return_type) > 16
	      || TYPE_LENGTH (return_type) % 4 != 0)
	    {
	      if (write_pass)
		regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM,
						struct_addr);
	    }
	}

      /* Push the arguments.  */
      for (i = 0; i < nargs; i++)
	{
	  struct value *arg = args[i];
	  const gdb_byte *arg_bits = value_contents_all (arg);
	  struct type *arg_type = check_typedef (value_type (arg));
	  ULONGEST arg_size = TYPE_LENGTH (arg_type);

	  if (i == 0 && struct_addr != 0 && !struct_return
	      && TYPE_CODE (arg_type) == TYPE_CODE_PTR
	      && extract_unsigned_integer (arg_bits, 4,
					   byte_order) == struct_addr)
	    {
	      /* This argument represents the address at which C++ (and
	         possibly other languages) store their return value.
	         Put this value in R15.  */
	      if (write_pass)
		regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM,
						struct_addr);
	    }
	  else if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT
		   && TYPE_CODE (arg_type) != TYPE_CODE_UNION)
	    {
	      /* Argument is a scalar.  */
	      if (arg_size == 8)
		{
		  if (i < num_register_candidate_args
		      && arg_reg <= RX_R4_REGNUM - 1)
		    {
		      /* If argument registers are going to be used to pass
		         an 8 byte scalar, the ABI specifies that two registers
		         must be available.  */
		      if (write_pass)
			{
			  regcache_cooked_write_unsigned (regcache, arg_reg,
							  extract_unsigned_integer
							  (arg_bits, 4,
							   byte_order));
			  regcache_cooked_write_unsigned (regcache,
							  arg_reg + 1,
							  extract_unsigned_integer
							  (arg_bits + 4, 4,
							   byte_order));
			}
		      arg_reg += 2;
		    }
		  else
		    {
		      sp_off = align_up (sp_off, 4);
		      /* Otherwise, pass the 8 byte scalar on the stack.  */
		      if (write_pass)
			write_memory (sp + sp_off, arg_bits, 8);
		      sp_off += 8;
		    }
		}
	      else
		{
		  ULONGEST u;

		  gdb_assert (arg_size <= 4);

		  u =
		    extract_unsigned_integer (arg_bits, arg_size, byte_order);

		  if (i < num_register_candidate_args
		      && arg_reg <= RX_R4_REGNUM)
		    {
		      if (write_pass)
			regcache_cooked_write_unsigned (regcache, arg_reg, u);
		      arg_reg += 1;
		    }
		  else
		    {
		      int p_arg_size = 4;

		      if (TYPE_PROTOTYPED (func_type)
			  && i < TYPE_NFIELDS (func_type))
			{
			  struct type *p_arg_type =
			    TYPE_FIELD_TYPE (func_type, i);
			  p_arg_size = TYPE_LENGTH (p_arg_type);
			}

		      sp_off = align_up (sp_off, p_arg_size);

		      if (write_pass)
			write_memory_unsigned_integer (sp + sp_off,
						       p_arg_size, byte_order,
						       u);
		      sp_off += p_arg_size;
		    }
		}
	    }
	  else
	    {
	      /* Argument is a struct or union.  Pass as much of the struct
	         in registers, if possible.  Pass the rest on the stack.  */
	      while (arg_size > 0)
		{
		  if (i < num_register_candidate_args
		      && arg_reg <= RX_R4_REGNUM
		      && arg_size <= 4 * (RX_R4_REGNUM - arg_reg + 1)
		      && arg_size % 4 == 0)
		    {
		      int len = min (arg_size, 4);

		      if (write_pass)
			regcache_cooked_write_unsigned (regcache, arg_reg,
							extract_unsigned_integer
							(arg_bits, len,
							 byte_order));
		      arg_bits += len;
		      arg_size -= len;
		      arg_reg++;
		    }
		  else
		    {
		      sp_off = align_up (sp_off, 4);
		      if (write_pass)
			write_memory (sp + sp_off, arg_bits, arg_size);
		      sp_off += align_up (arg_size, 4);
		      arg_size = 0;
		    }
		}
	    }
	}
    }

  /* Keep track of the stack address prior to pushing the return address.
     This is the value that we'll return.  */
  cfa = sp;

  /* Push the return address.  */
  sp = sp - 4;
  write_memory_unsigned_integer (sp, 4, byte_order, bp_addr);

  /* Update the stack pointer.  */
  regcache_cooked_write_unsigned (regcache, RX_SP_REGNUM, sp);

  return cfa;
}

/* Implement the "return_value" gdbarch method.  */
static enum return_value_convention
rx_return_value (struct gdbarch *gdbarch,
		 struct value *function,
		 struct type *valtype,
		 struct regcache *regcache,
		 gdb_byte *readbuf, const gdb_byte *writebuf)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  ULONGEST valtype_len = TYPE_LENGTH (valtype);

  if (TYPE_LENGTH (valtype) > 16
      || ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
	   || TYPE_CODE (valtype) == TYPE_CODE_UNION)
	  && TYPE_LENGTH (valtype) % 4 != 0))
    return RETURN_VALUE_STRUCT_CONVENTION;

  if (readbuf)
    {
      ULONGEST u;
      int argreg = RX_R1_REGNUM;
      int offset = 0;

      while (valtype_len > 0)
	{
	  int len = min (valtype_len, 4);

	  regcache_cooked_read_unsigned (regcache, argreg, &u);
	  store_unsigned_integer (readbuf + offset, len, byte_order, u);
	  valtype_len -= len;
	  offset += len;
	  argreg++;
	}
    }

  if (writebuf)
    {
      ULONGEST u;
      int argreg = RX_R1_REGNUM;
      int offset = 0;

      while (valtype_len > 0)
	{
	  int len = min (valtype_len, 4);

	  u = extract_unsigned_integer (writebuf + offset, len, byte_order);
	  regcache_cooked_write_unsigned (regcache, argreg, u);
	  valtype_len -= len;
	  offset += len;
	  argreg++;
	}
    }

  return RETURN_VALUE_REGISTER_CONVENTION;
}

/* Implement the "breakpoint_from_pc" gdbarch method.  */
static const gdb_byte *
rx_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
{
  static gdb_byte breakpoint[] = { 0x00 };
  *lenptr = sizeof breakpoint;
  return breakpoint;
}

/* Allocate and initialize a gdbarch object.  */
static struct gdbarch *
rx_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;
  int elf_flags;

  /* Extract the elf_flags if available.  */
  if (info.abfd != NULL
      && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
    elf_flags = elf_elfheader (info.abfd)->e_flags;
  else
    elf_flags = 0;


  /* Try to find the architecture in the list of already defined
     architectures.  */
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
       arches != NULL;
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
    {
      if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
	continue;

      return arches->gdbarch;
    }

  /* None found, create a new architecture from the information
     provided.  */
  tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
  gdbarch = gdbarch_alloc (&info, tdep);
  tdep->elf_flags = elf_flags;

  set_gdbarch_num_regs (gdbarch, RX_NUM_REGS);
  set_gdbarch_num_pseudo_regs (gdbarch, 0);
  set_gdbarch_register_name (gdbarch, rx_register_name);
  set_gdbarch_register_type (gdbarch, rx_register_type);
  set_gdbarch_pc_regnum (gdbarch, RX_PC_REGNUM);
  set_gdbarch_sp_regnum (gdbarch, RX_SP_REGNUM);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_decr_pc_after_break (gdbarch, 1);
  set_gdbarch_breakpoint_from_pc (gdbarch, rx_breakpoint_from_pc);
  set_gdbarch_skip_prologue (gdbarch, rx_skip_prologue);

  set_gdbarch_print_insn (gdbarch, print_insn_rx);

  set_gdbarch_unwind_pc (gdbarch, rx_unwind_pc);
  set_gdbarch_unwind_sp (gdbarch, rx_unwind_sp);

  /* Target builtin data types.  */
  set_gdbarch_char_signed (gdbarch, 0);
  set_gdbarch_short_bit (gdbarch, 16);
  set_gdbarch_int_bit (gdbarch, 32);
  set_gdbarch_long_bit (gdbarch, 32);
  set_gdbarch_long_long_bit (gdbarch, 64);
  set_gdbarch_ptr_bit (gdbarch, 32);
  set_gdbarch_float_bit (gdbarch, 32);
  set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
  if (elf_flags & E_FLAG_RX_64BIT_DOUBLES)
    {
      set_gdbarch_double_bit (gdbarch, 64);
      set_gdbarch_long_double_bit (gdbarch, 64);
      set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
      set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
    }
  else
    {
      set_gdbarch_double_bit (gdbarch, 32);
      set_gdbarch_long_double_bit (gdbarch, 32);
      set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
      set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
    }

  /* Frame unwinding.  */
#if 0
  /* Note: The test results are better with the dwarf2 unwinder disabled,
     so it's turned off for now.  */
  dwarf2_append_unwinders (gdbarch);
#endif
  frame_unwind_append_unwinder (gdbarch, &rx_frame_unwind);

  /* Methods for saving / extracting a dummy frame's ID.
     The ID's stack address must match the SP value returned by
     PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos.  */
  set_gdbarch_dummy_id (gdbarch, rx_dummy_id);
  set_gdbarch_push_dummy_call (gdbarch, rx_push_dummy_call);
  set_gdbarch_return_value (gdbarch, rx_return_value);

  /* Virtual tables.  */
  set_gdbarch_vbit_in_delta (gdbarch, 1);

  return gdbarch;
}

/* -Wmissing-prototypes */
extern initialize_file_ftype _initialize_rx_tdep;

/* Register the above initialization routine.  */

void
_initialize_rx_tdep (void)
{
  register_gdbarch_init (bfd_arch_rx, rx_gdbarch_init);
}