aboutsummaryrefslogtreecommitdiff
blob: 903ca1c9e4b98355c6545ea1cc41350b5289b46f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
#include "Python.h"
#include "pycore_pymem.h"         // _PyTraceMalloc_Config

#include <stdbool.h>


/* Defined in tracemalloc.c */
extern void _PyMem_DumpTraceback(int fd, const void *ptr);


/* Python's malloc wrappers (see pymem.h) */

#undef  uint
#define uint    unsigned int    /* assuming >= 16 bits */

/* Forward declaration */
static void* _PyMem_DebugRawMalloc(void *ctx, size_t size);
static void* _PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize);
static void* _PyMem_DebugRawRealloc(void *ctx, void *ptr, size_t size);
static void _PyMem_DebugRawFree(void *ctx, void *ptr);

static void* _PyMem_DebugMalloc(void *ctx, size_t size);
static void* _PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize);
static void* _PyMem_DebugRealloc(void *ctx, void *ptr, size_t size);
static void _PyMem_DebugFree(void *ctx, void *p);

static void _PyObject_DebugDumpAddress(const void *p);
static void _PyMem_DebugCheckAddress(const char *func, char api_id, const void *p);

static void _PyMem_SetupDebugHooksDomain(PyMemAllocatorDomain domain);

#if defined(__has_feature)  /* Clang */
#  if __has_feature(address_sanitizer) /* is ASAN enabled? */
#    define _Py_NO_SANITIZE_ADDRESS \
        __attribute__((no_sanitize("address")))
#  endif
#  if __has_feature(thread_sanitizer)  /* is TSAN enabled? */
#    define _Py_NO_SANITIZE_THREAD __attribute__((no_sanitize_thread))
#  endif
#  if __has_feature(memory_sanitizer)  /* is MSAN enabled? */
#    define _Py_NO_SANITIZE_MEMORY __attribute__((no_sanitize_memory))
#  endif
#elif defined(__GNUC__)
#  if defined(__SANITIZE_ADDRESS__)    /* GCC 4.8+, is ASAN enabled? */
#    define _Py_NO_SANITIZE_ADDRESS \
        __attribute__((no_sanitize_address))
#  endif
   // TSAN is supported since GCC 5.1, but __SANITIZE_THREAD__ macro
   // is provided only since GCC 7.
#  if __GNUC__ > 5 || (__GNUC__ == 5 && __GNUC_MINOR__ >= 1)
#    define _Py_NO_SANITIZE_THREAD __attribute__((no_sanitize_thread))
#  endif
#endif

#ifndef _Py_NO_SANITIZE_ADDRESS
#  define _Py_NO_SANITIZE_ADDRESS
#endif
#ifndef _Py_NO_SANITIZE_THREAD
#  define _Py_NO_SANITIZE_THREAD
#endif
#ifndef _Py_NO_SANITIZE_MEMORY
#  define _Py_NO_SANITIZE_MEMORY
#endif

#ifdef WITH_PYMALLOC

#ifdef MS_WINDOWS
#  include <windows.h>
#elif defined(HAVE_MMAP)
#  include <sys/mman.h>
#  ifdef MAP_ANONYMOUS
#    define ARENAS_USE_MMAP
#  endif
#endif

/* Forward declaration */
static void* _PyObject_Malloc(void *ctx, size_t size);
static void* _PyObject_Calloc(void *ctx, size_t nelem, size_t elsize);
static void _PyObject_Free(void *ctx, void *p);
static void* _PyObject_Realloc(void *ctx, void *ptr, size_t size);
#endif


/* bpo-35053: Declare tracemalloc configuration here rather than
   Modules/_tracemalloc.c because _tracemalloc can be compiled as dynamic
   library, whereas _Py_NewReference() requires it. */
struct _PyTraceMalloc_Config _Py_tracemalloc_config = _PyTraceMalloc_Config_INIT;


static void *
_PyMem_RawMalloc(void *ctx, size_t size)
{
    /* PyMem_RawMalloc(0) means malloc(1). Some systems would return NULL
       for malloc(0), which would be treated as an error. Some platforms would
       return a pointer with no memory behind it, which would break pymalloc.
       To solve these problems, allocate an extra byte. */
    if (size == 0)
        size = 1;
    return malloc(size);
}

static void *
_PyMem_RawCalloc(void *ctx, size_t nelem, size_t elsize)
{
    /* PyMem_RawCalloc(0, 0) means calloc(1, 1). Some systems would return NULL
       for calloc(0, 0), which would be treated as an error. Some platforms
       would return a pointer with no memory behind it, which would break
       pymalloc.  To solve these problems, allocate an extra byte. */
    if (nelem == 0 || elsize == 0) {
        nelem = 1;
        elsize = 1;
    }
    return calloc(nelem, elsize);
}

static void *
_PyMem_RawRealloc(void *ctx, void *ptr, size_t size)
{
    if (size == 0)
        size = 1;
    return realloc(ptr, size);
}

static void
_PyMem_RawFree(void *ctx, void *ptr)
{
    free(ptr);
}


#ifdef MS_WINDOWS
static void *
_PyObject_ArenaVirtualAlloc(void *ctx, size_t size)
{
    return VirtualAlloc(NULL, size,
                        MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
}

static void
_PyObject_ArenaVirtualFree(void *ctx, void *ptr, size_t size)
{
    VirtualFree(ptr, 0, MEM_RELEASE);
}

#elif defined(ARENAS_USE_MMAP)
static void *
_PyObject_ArenaMmap(void *ctx, size_t size)
{
    void *ptr;
    ptr = mmap(NULL, size, PROT_READ|PROT_WRITE,
               MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
    if (ptr == MAP_FAILED)
        return NULL;
    assert(ptr != NULL);
    return ptr;
}

static void
_PyObject_ArenaMunmap(void *ctx, void *ptr, size_t size)
{
    munmap(ptr, size);
}

#else
static void *
_PyObject_ArenaMalloc(void *ctx, size_t size)
{
    return malloc(size);
}

static void
_PyObject_ArenaFree(void *ctx, void *ptr, size_t size)
{
    free(ptr);
}
#endif

#define MALLOC_ALLOC {NULL, _PyMem_RawMalloc, _PyMem_RawCalloc, _PyMem_RawRealloc, _PyMem_RawFree}
#ifdef WITH_PYMALLOC
#  define PYMALLOC_ALLOC {NULL, _PyObject_Malloc, _PyObject_Calloc, _PyObject_Realloc, _PyObject_Free}
#endif

#define PYRAW_ALLOC MALLOC_ALLOC
#ifdef WITH_PYMALLOC
#  define PYOBJ_ALLOC PYMALLOC_ALLOC
#else
#  define PYOBJ_ALLOC MALLOC_ALLOC
#endif
#define PYMEM_ALLOC PYOBJ_ALLOC

typedef struct {
    /* We tag each block with an API ID in order to tag API violations */
    char api_id;
    PyMemAllocatorEx alloc;
} debug_alloc_api_t;
static struct {
    debug_alloc_api_t raw;
    debug_alloc_api_t mem;
    debug_alloc_api_t obj;
} _PyMem_Debug = {
    {'r', PYRAW_ALLOC},
    {'m', PYMEM_ALLOC},
    {'o', PYOBJ_ALLOC}
    };

#define PYDBGRAW_ALLOC \
    {&_PyMem_Debug.raw, _PyMem_DebugRawMalloc, _PyMem_DebugRawCalloc, _PyMem_DebugRawRealloc, _PyMem_DebugRawFree}
#define PYDBGMEM_ALLOC \
    {&_PyMem_Debug.mem, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree}
#define PYDBGOBJ_ALLOC \
    {&_PyMem_Debug.obj, _PyMem_DebugMalloc, _PyMem_DebugCalloc, _PyMem_DebugRealloc, _PyMem_DebugFree}

#ifdef Py_DEBUG
static PyMemAllocatorEx _PyMem_Raw = PYDBGRAW_ALLOC;
static PyMemAllocatorEx _PyMem = PYDBGMEM_ALLOC;
static PyMemAllocatorEx _PyObject = PYDBGOBJ_ALLOC;
#else
static PyMemAllocatorEx _PyMem_Raw = PYRAW_ALLOC;
static PyMemAllocatorEx _PyMem = PYMEM_ALLOC;
static PyMemAllocatorEx _PyObject = PYOBJ_ALLOC;
#endif


static int
pymem_set_default_allocator(PyMemAllocatorDomain domain, int debug,
                            PyMemAllocatorEx *old_alloc)
{
    if (old_alloc != NULL) {
        PyMem_GetAllocator(domain, old_alloc);
    }


    PyMemAllocatorEx new_alloc;
    switch(domain)
    {
    case PYMEM_DOMAIN_RAW:
        new_alloc = (PyMemAllocatorEx)PYRAW_ALLOC;
        break;
    case PYMEM_DOMAIN_MEM:
        new_alloc = (PyMemAllocatorEx)PYMEM_ALLOC;
        break;
    case PYMEM_DOMAIN_OBJ:
        new_alloc = (PyMemAllocatorEx)PYOBJ_ALLOC;
        break;
    default:
        /* unknown domain */
        return -1;
    }
    PyMem_SetAllocator(domain, &new_alloc);
    if (debug) {
        _PyMem_SetupDebugHooksDomain(domain);
    }
    return 0;
}


int
_PyMem_SetDefaultAllocator(PyMemAllocatorDomain domain,
                           PyMemAllocatorEx *old_alloc)
{
#ifdef Py_DEBUG
    const int debug = 1;
#else
    const int debug = 0;
#endif
    return pymem_set_default_allocator(domain, debug, old_alloc);
}


int
_PyMem_GetAllocatorName(const char *name, PyMemAllocatorName *allocator)
{
    if (name == NULL || *name == '\0') {
        /* PYTHONMALLOC is empty or is not set or ignored (-E/-I command line
           nameions): use default memory allocators */
        *allocator = PYMEM_ALLOCATOR_DEFAULT;
    }
    else if (strcmp(name, "default") == 0) {
        *allocator = PYMEM_ALLOCATOR_DEFAULT;
    }
    else if (strcmp(name, "debug") == 0) {
        *allocator = PYMEM_ALLOCATOR_DEBUG;
    }
#ifdef WITH_PYMALLOC
    else if (strcmp(name, "pymalloc") == 0) {
        *allocator = PYMEM_ALLOCATOR_PYMALLOC;
    }
    else if (strcmp(name, "pymalloc_debug") == 0) {
        *allocator = PYMEM_ALLOCATOR_PYMALLOC_DEBUG;
    }
#endif
    else if (strcmp(name, "malloc") == 0) {
        *allocator = PYMEM_ALLOCATOR_MALLOC;
    }
    else if (strcmp(name, "malloc_debug") == 0) {
        *allocator = PYMEM_ALLOCATOR_MALLOC_DEBUG;
    }
    else {
        /* unknown allocator */
        return -1;
    }
    return 0;
}


int
_PyMem_SetupAllocators(PyMemAllocatorName allocator)
{
    switch (allocator) {
    case PYMEM_ALLOCATOR_NOT_SET:
        /* do nothing */
        break;

    case PYMEM_ALLOCATOR_DEFAULT:
        (void)_PyMem_SetDefaultAllocator(PYMEM_DOMAIN_RAW, NULL);
        (void)_PyMem_SetDefaultAllocator(PYMEM_DOMAIN_MEM, NULL);
        (void)_PyMem_SetDefaultAllocator(PYMEM_DOMAIN_OBJ, NULL);
        break;

    case PYMEM_ALLOCATOR_DEBUG:
        (void)pymem_set_default_allocator(PYMEM_DOMAIN_RAW, 1, NULL);
        (void)pymem_set_default_allocator(PYMEM_DOMAIN_MEM, 1, NULL);
        (void)pymem_set_default_allocator(PYMEM_DOMAIN_OBJ, 1, NULL);
        break;

#ifdef WITH_PYMALLOC
    case PYMEM_ALLOCATOR_PYMALLOC:
    case PYMEM_ALLOCATOR_PYMALLOC_DEBUG:
    {
        PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC;
        PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &malloc_alloc);

        PyMemAllocatorEx pymalloc = PYMALLOC_ALLOC;
        PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &pymalloc);
        PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &pymalloc);

        if (allocator == PYMEM_ALLOCATOR_PYMALLOC_DEBUG) {
            PyMem_SetupDebugHooks();
        }
        break;
    }
#endif

    case PYMEM_ALLOCATOR_MALLOC:
    case PYMEM_ALLOCATOR_MALLOC_DEBUG:
    {
        PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC;
        PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &malloc_alloc);
        PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &malloc_alloc);
        PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &malloc_alloc);

        if (allocator == PYMEM_ALLOCATOR_MALLOC_DEBUG) {
            PyMem_SetupDebugHooks();
        }
        break;
    }

    default:
        /* unknown allocator */
        return -1;
    }
    return 0;
}


static int
pymemallocator_eq(PyMemAllocatorEx *a, PyMemAllocatorEx *b)
{
    return (memcmp(a, b, sizeof(PyMemAllocatorEx)) == 0);
}


const char*
_PyMem_GetCurrentAllocatorName(void)
{
    PyMemAllocatorEx malloc_alloc = MALLOC_ALLOC;
#ifdef WITH_PYMALLOC
    PyMemAllocatorEx pymalloc = PYMALLOC_ALLOC;
#endif

    if (pymemallocator_eq(&_PyMem_Raw, &malloc_alloc) &&
        pymemallocator_eq(&_PyMem, &malloc_alloc) &&
        pymemallocator_eq(&_PyObject, &malloc_alloc))
    {
        return "malloc";
    }
#ifdef WITH_PYMALLOC
    if (pymemallocator_eq(&_PyMem_Raw, &malloc_alloc) &&
        pymemallocator_eq(&_PyMem, &pymalloc) &&
        pymemallocator_eq(&_PyObject, &pymalloc))
    {
        return "pymalloc";
    }
#endif

    PyMemAllocatorEx dbg_raw = PYDBGRAW_ALLOC;
    PyMemAllocatorEx dbg_mem = PYDBGMEM_ALLOC;
    PyMemAllocatorEx dbg_obj = PYDBGOBJ_ALLOC;

    if (pymemallocator_eq(&_PyMem_Raw, &dbg_raw) &&
        pymemallocator_eq(&_PyMem, &dbg_mem) &&
        pymemallocator_eq(&_PyObject, &dbg_obj))
    {
        /* Debug hooks installed */
        if (pymemallocator_eq(&_PyMem_Debug.raw.alloc, &malloc_alloc) &&
            pymemallocator_eq(&_PyMem_Debug.mem.alloc, &malloc_alloc) &&
            pymemallocator_eq(&_PyMem_Debug.obj.alloc, &malloc_alloc))
        {
            return "malloc_debug";
        }
#ifdef WITH_PYMALLOC
        if (pymemallocator_eq(&_PyMem_Debug.raw.alloc, &malloc_alloc) &&
            pymemallocator_eq(&_PyMem_Debug.mem.alloc, &pymalloc) &&
            pymemallocator_eq(&_PyMem_Debug.obj.alloc, &pymalloc))
        {
            return "pymalloc_debug";
        }
#endif
    }
    return NULL;
}


#undef MALLOC_ALLOC
#undef PYMALLOC_ALLOC
#undef PYRAW_ALLOC
#undef PYMEM_ALLOC
#undef PYOBJ_ALLOC
#undef PYDBGRAW_ALLOC
#undef PYDBGMEM_ALLOC
#undef PYDBGOBJ_ALLOC


static PyObjectArenaAllocator _PyObject_Arena = {NULL,
#ifdef MS_WINDOWS
    _PyObject_ArenaVirtualAlloc, _PyObject_ArenaVirtualFree
#elif defined(ARENAS_USE_MMAP)
    _PyObject_ArenaMmap, _PyObject_ArenaMunmap
#else
    _PyObject_ArenaMalloc, _PyObject_ArenaFree
#endif
    };

#ifdef WITH_PYMALLOC
static int
_PyMem_DebugEnabled(void)
{
    return (_PyObject.malloc == _PyMem_DebugMalloc);
}

static int
_PyMem_PymallocEnabled(void)
{
    if (_PyMem_DebugEnabled()) {
        return (_PyMem_Debug.obj.alloc.malloc == _PyObject_Malloc);
    }
    else {
        return (_PyObject.malloc == _PyObject_Malloc);
    }
}
#endif


static void
_PyMem_SetupDebugHooksDomain(PyMemAllocatorDomain domain)
{
    PyMemAllocatorEx alloc;

    if (domain == PYMEM_DOMAIN_RAW) {
        if (_PyMem_Raw.malloc == _PyMem_DebugRawMalloc) {
            return;
        }

        PyMem_GetAllocator(PYMEM_DOMAIN_RAW, &_PyMem_Debug.raw.alloc);
        alloc.ctx = &_PyMem_Debug.raw;
        alloc.malloc = _PyMem_DebugRawMalloc;
        alloc.calloc = _PyMem_DebugRawCalloc;
        alloc.realloc = _PyMem_DebugRawRealloc;
        alloc.free = _PyMem_DebugRawFree;
        PyMem_SetAllocator(PYMEM_DOMAIN_RAW, &alloc);
    }
    else if (domain == PYMEM_DOMAIN_MEM) {
        if (_PyMem.malloc == _PyMem_DebugMalloc) {
            return;
        }

        PyMem_GetAllocator(PYMEM_DOMAIN_MEM, &_PyMem_Debug.mem.alloc);
        alloc.ctx = &_PyMem_Debug.mem;
        alloc.malloc = _PyMem_DebugMalloc;
        alloc.calloc = _PyMem_DebugCalloc;
        alloc.realloc = _PyMem_DebugRealloc;
        alloc.free = _PyMem_DebugFree;
        PyMem_SetAllocator(PYMEM_DOMAIN_MEM, &alloc);
    }
    else if (domain == PYMEM_DOMAIN_OBJ)  {
        if (_PyObject.malloc == _PyMem_DebugMalloc) {
            return;
        }

        PyMem_GetAllocator(PYMEM_DOMAIN_OBJ, &_PyMem_Debug.obj.alloc);
        alloc.ctx = &_PyMem_Debug.obj;
        alloc.malloc = _PyMem_DebugMalloc;
        alloc.calloc = _PyMem_DebugCalloc;
        alloc.realloc = _PyMem_DebugRealloc;
        alloc.free = _PyMem_DebugFree;
        PyMem_SetAllocator(PYMEM_DOMAIN_OBJ, &alloc);
    }
}


void
PyMem_SetupDebugHooks(void)
{
    _PyMem_SetupDebugHooksDomain(PYMEM_DOMAIN_RAW);
    _PyMem_SetupDebugHooksDomain(PYMEM_DOMAIN_MEM);
    _PyMem_SetupDebugHooksDomain(PYMEM_DOMAIN_OBJ);
}

void
PyMem_GetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
{
    switch(domain)
    {
    case PYMEM_DOMAIN_RAW: *allocator = _PyMem_Raw; break;
    case PYMEM_DOMAIN_MEM: *allocator = _PyMem; break;
    case PYMEM_DOMAIN_OBJ: *allocator = _PyObject; break;
    default:
        /* unknown domain: set all attributes to NULL */
        allocator->ctx = NULL;
        allocator->malloc = NULL;
        allocator->calloc = NULL;
        allocator->realloc = NULL;
        allocator->free = NULL;
    }
}

void
PyMem_SetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
{
    switch(domain)
    {
    case PYMEM_DOMAIN_RAW: _PyMem_Raw = *allocator; break;
    case PYMEM_DOMAIN_MEM: _PyMem = *allocator; break;
    case PYMEM_DOMAIN_OBJ: _PyObject = *allocator; break;
    /* ignore unknown domain */
    }
}

void
PyObject_GetArenaAllocator(PyObjectArenaAllocator *allocator)
{
    *allocator = _PyObject_Arena;
}

void *
_PyObject_VirtualAlloc(size_t size)
{
    return _PyObject_Arena.alloc(_PyObject_Arena.ctx, size);
}

void
_PyObject_VirtualFree(void *obj, size_t size)
{
    _PyObject_Arena.free(_PyObject_Arena.ctx, obj, size);
}

void
PyObject_SetArenaAllocator(PyObjectArenaAllocator *allocator)
{
    _PyObject_Arena = *allocator;
}

void *
PyMem_RawMalloc(size_t size)
{
    /*
     * Limit ourselves to PY_SSIZE_T_MAX bytes to prevent security holes.
     * Most python internals blindly use a signed Py_ssize_t to track
     * things without checking for overflows or negatives.
     * As size_t is unsigned, checking for size < 0 is not required.
     */
    if (size > (size_t)PY_SSIZE_T_MAX)
        return NULL;
    return _PyMem_Raw.malloc(_PyMem_Raw.ctx, size);
}

void *
PyMem_RawCalloc(size_t nelem, size_t elsize)
{
    /* see PyMem_RawMalloc() */
    if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)
        return NULL;
    return _PyMem_Raw.calloc(_PyMem_Raw.ctx, nelem, elsize);
}

void*
PyMem_RawRealloc(void *ptr, size_t new_size)
{
    /* see PyMem_RawMalloc() */
    if (new_size > (size_t)PY_SSIZE_T_MAX)
        return NULL;
    return _PyMem_Raw.realloc(_PyMem_Raw.ctx, ptr, new_size);
}

void PyMem_RawFree(void *ptr)
{
    _PyMem_Raw.free(_PyMem_Raw.ctx, ptr);
}


void *
PyMem_Malloc(size_t size)
{
    /* see PyMem_RawMalloc() */
    if (size > (size_t)PY_SSIZE_T_MAX)
        return NULL;
    return _PyMem.malloc(_PyMem.ctx, size);
}

void *
PyMem_Calloc(size_t nelem, size_t elsize)
{
    /* see PyMem_RawMalloc() */
    if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)
        return NULL;
    return _PyMem.calloc(_PyMem.ctx, nelem, elsize);
}

void *
PyMem_Realloc(void *ptr, size_t new_size)
{
    /* see PyMem_RawMalloc() */
    if (new_size > (size_t)PY_SSIZE_T_MAX)
        return NULL;
    return _PyMem.realloc(_PyMem.ctx, ptr, new_size);
}

void
PyMem_Free(void *ptr)
{
    _PyMem.free(_PyMem.ctx, ptr);
}


wchar_t*
_PyMem_RawWcsdup(const wchar_t *str)
{
    assert(str != NULL);

    size_t len = wcslen(str);
    if (len > (size_t)PY_SSIZE_T_MAX / sizeof(wchar_t) - 1) {
        return NULL;
    }

    size_t size = (len + 1) * sizeof(wchar_t);
    wchar_t *str2 = PyMem_RawMalloc(size);
    if (str2 == NULL) {
        return NULL;
    }

    memcpy(str2, str, size);
    return str2;
}

char *
_PyMem_RawStrdup(const char *str)
{
    assert(str != NULL);
    size_t size = strlen(str) + 1;
    char *copy = PyMem_RawMalloc(size);
    if (copy == NULL) {
        return NULL;
    }
    memcpy(copy, str, size);
    return copy;
}

char *
_PyMem_Strdup(const char *str)
{
    assert(str != NULL);
    size_t size = strlen(str) + 1;
    char *copy = PyMem_Malloc(size);
    if (copy == NULL) {
        return NULL;
    }
    memcpy(copy, str, size);
    return copy;
}

void *
PyObject_Malloc(size_t size)
{
    /* see PyMem_RawMalloc() */
    if (size > (size_t)PY_SSIZE_T_MAX)
        return NULL;
    return _PyObject.malloc(_PyObject.ctx, size);
}

void *
PyObject_Calloc(size_t nelem, size_t elsize)
{
    /* see PyMem_RawMalloc() */
    if (elsize != 0 && nelem > (size_t)PY_SSIZE_T_MAX / elsize)
        return NULL;
    return _PyObject.calloc(_PyObject.ctx, nelem, elsize);
}

void *
PyObject_Realloc(void *ptr, size_t new_size)
{
    /* see PyMem_RawMalloc() */
    if (new_size > (size_t)PY_SSIZE_T_MAX)
        return NULL;
    return _PyObject.realloc(_PyObject.ctx, ptr, new_size);
}

void
PyObject_Free(void *ptr)
{
    _PyObject.free(_PyObject.ctx, ptr);
}


/* If we're using GCC, use __builtin_expect() to reduce overhead of
   the valgrind checks */
#if defined(__GNUC__) && (__GNUC__ > 2) && defined(__OPTIMIZE__)
#  define UNLIKELY(value) __builtin_expect((value), 0)
#  define LIKELY(value) __builtin_expect((value), 1)
#else
#  define UNLIKELY(value) (value)
#  define LIKELY(value) (value)
#endif

#ifdef WITH_PYMALLOC

#ifdef WITH_VALGRIND
#include <valgrind/valgrind.h>

/* -1 indicates that we haven't checked that we're running on valgrind yet. */
static int running_on_valgrind = -1;
#endif


/* An object allocator for Python.

   Here is an introduction to the layers of the Python memory architecture,
   showing where the object allocator is actually used (layer +2), It is
   called for every object allocation and deallocation (PyObject_New/Del),
   unless the object-specific allocators implement a proprietary allocation
   scheme (ex.: ints use a simple free list). This is also the place where
   the cyclic garbage collector operates selectively on container objects.


    Object-specific allocators
    _____   ______   ______       ________
   [ int ] [ dict ] [ list ] ... [ string ]       Python core         |
+3 | <----- Object-specific memory -----> | <-- Non-object memory --> |
    _______________________________       |                           |
   [   Python's object allocator   ]      |                           |
+2 | ####### Object memory ####### | <------ Internal buffers ------> |
    ______________________________________________________________    |
   [          Python's raw memory allocator (PyMem_ API)          ]   |
+1 | <----- Python memory (under PyMem manager's control) ------> |   |
    __________________________________________________________________
   [    Underlying general-purpose allocator (ex: C library malloc)   ]
 0 | <------ Virtual memory allocated for the python process -------> |

   =========================================================================
    _______________________________________________________________________
   [                OS-specific Virtual Memory Manager (VMM)               ]
-1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |
    __________________________________   __________________________________
   [                                  ] [                                  ]
-2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |

*/
/*==========================================================================*/

/* A fast, special-purpose memory allocator for small blocks, to be used
   on top of a general-purpose malloc -- heavily based on previous art. */

/* Vladimir Marangozov -- August 2000 */

/*
 * "Memory management is where the rubber meets the road -- if we do the wrong
 * thing at any level, the results will not be good. And if we don't make the
 * levels work well together, we are in serious trouble." (1)
 *
 * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles,
 *    "Dynamic Storage Allocation: A Survey and Critical Review",
 *    in Proc. 1995 Int'l. Workshop on Memory Management, September 1995.
 */

/* #undef WITH_MEMORY_LIMITS */         /* disable mem limit checks  */

/*==========================================================================*/

/*
 * Allocation strategy abstract:
 *
 * For small requests, the allocator sub-allocates <Big> blocks of memory.
 * Requests greater than SMALL_REQUEST_THRESHOLD bytes are routed to the
 * system's allocator.
 *
 * Small requests are grouped in size classes spaced 8 bytes apart, due
 * to the required valid alignment of the returned address. Requests of
 * a particular size are serviced from memory pools of 4K (one VMM page).
 * Pools are fragmented on demand and contain free lists of blocks of one
 * particular size class. In other words, there is a fixed-size allocator
 * for each size class. Free pools are shared by the different allocators
 * thus minimizing the space reserved for a particular size class.
 *
 * This allocation strategy is a variant of what is known as "simple
 * segregated storage based on array of free lists". The main drawback of
 * simple segregated storage is that we might end up with lot of reserved
 * memory for the different free lists, which degenerate in time. To avoid
 * this, we partition each free list in pools and we share dynamically the
 * reserved space between all free lists. This technique is quite efficient
 * for memory intensive programs which allocate mainly small-sized blocks.
 *
 * For small requests we have the following table:
 *
 * Request in bytes     Size of allocated block      Size class idx
 * ----------------------------------------------------------------
 *        1-8                     8                       0
 *        9-16                   16                       1
 *       17-24                   24                       2
 *       25-32                   32                       3
 *       33-40                   40                       4
 *       41-48                   48                       5
 *       49-56                   56                       6
 *       57-64                   64                       7
 *       65-72                   72                       8
 *        ...                   ...                     ...
 *      497-504                 504                      62
 *      505-512                 512                      63
 *
 *      0, SMALL_REQUEST_THRESHOLD + 1 and up: routed to the underlying
 *      allocator.
 */

/*==========================================================================*/

/*
 * -- Main tunable settings section --
 */

/*
 * Alignment of addresses returned to the user. 8-bytes alignment works
 * on most current architectures (with 32-bit or 64-bit address busses).
 * The alignment value is also used for grouping small requests in size
 * classes spaced ALIGNMENT bytes apart.
 *
 * You shouldn't change this unless you know what you are doing.
 */

#if SIZEOF_VOID_P > 4
#define ALIGNMENT              16               /* must be 2^N */
#define ALIGNMENT_SHIFT         4
#else
#define ALIGNMENT               8               /* must be 2^N */
#define ALIGNMENT_SHIFT         3
#endif

/* Return the number of bytes in size class I, as a uint. */
#define INDEX2SIZE(I) (((uint)(I) + 1) << ALIGNMENT_SHIFT)

/*
 * Max size threshold below which malloc requests are considered to be
 * small enough in order to use preallocated memory pools. You can tune
 * this value according to your application behaviour and memory needs.
 *
 * Note: a size threshold of 512 guarantees that newly created dictionaries
 * will be allocated from preallocated memory pools on 64-bit.
 *
 * The following invariants must hold:
 *      1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 512
 *      2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT
 *
 * Although not required, for better performance and space efficiency,
 * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2.
 */
#define SMALL_REQUEST_THRESHOLD 512
#define NB_SMALL_SIZE_CLASSES   (SMALL_REQUEST_THRESHOLD / ALIGNMENT)

/*
 * The system's VMM page size can be obtained on most unices with a
 * getpagesize() call or deduced from various header files. To make
 * things simpler, we assume that it is 4K, which is OK for most systems.
 * It is probably better if this is the native page size, but it doesn't
 * have to be.  In theory, if SYSTEM_PAGE_SIZE is larger than the native page
 * size, then `POOL_ADDR(p)->arenaindex' could rarely cause a segmentation
 * violation fault.  4K is apparently OK for all the platforms that python
 * currently targets.
 */
#define SYSTEM_PAGE_SIZE        (4 * 1024)
#define SYSTEM_PAGE_SIZE_MASK   (SYSTEM_PAGE_SIZE - 1)

/*
 * Maximum amount of memory managed by the allocator for small requests.
 */
#ifdef WITH_MEMORY_LIMITS
#ifndef SMALL_MEMORY_LIMIT
#define SMALL_MEMORY_LIMIT      (64 * 1024 * 1024)      /* 64 MB -- more? */
#endif
#endif

#if !defined(WITH_PYMALLOC_RADIX_TREE)
/* Use radix-tree to track arena memory regions, for address_in_range().
 * Enable by default since it allows larger pool sizes.  Can be disabled
 * using -DWITH_PYMALLOC_RADIX_TREE=0 */
#define WITH_PYMALLOC_RADIX_TREE 1
#endif

#if SIZEOF_VOID_P > 4
/* on 64-bit platforms use larger pools and arenas if we can */
#define USE_LARGE_ARENAS
#if WITH_PYMALLOC_RADIX_TREE
/* large pools only supported if radix-tree is enabled */
#define USE_LARGE_POOLS
#endif
#endif

/*
 * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned
 * on a page boundary. This is a reserved virtual address space for the
 * current process (obtained through a malloc()/mmap() call). In no way this
 * means that the memory arenas will be used entirely. A malloc(<Big>) is
 * usually an address range reservation for <Big> bytes, unless all pages within
 * this space are referenced subsequently. So malloc'ing big blocks and not
 * using them does not mean "wasting memory". It's an addressable range
 * wastage...
 *
 * Arenas are allocated with mmap() on systems supporting anonymous memory
 * mappings to reduce heap fragmentation.
 */
#ifdef USE_LARGE_ARENAS
#define ARENA_BITS              20                    /* 1 MiB */
#else
#define ARENA_BITS              18                    /* 256 KiB */
#endif
#define ARENA_SIZE              (1 << ARENA_BITS)
#define ARENA_SIZE_MASK         (ARENA_SIZE - 1)

#ifdef WITH_MEMORY_LIMITS
#define MAX_ARENAS              (SMALL_MEMORY_LIMIT / ARENA_SIZE)
#endif

/*
 * Size of the pools used for small blocks.  Must be a power of 2.
 */
#ifdef USE_LARGE_POOLS
#define POOL_BITS               14                  /* 16 KiB */
#else
#define POOL_BITS               12                  /* 4 KiB */
#endif
#define POOL_SIZE               (1 << POOL_BITS)
#define POOL_SIZE_MASK          (POOL_SIZE - 1)

#if !WITH_PYMALLOC_RADIX_TREE
#if POOL_SIZE != SYSTEM_PAGE_SIZE
#   error "pool size must be equal to system page size"
#endif
#endif

#define MAX_POOLS_IN_ARENA  (ARENA_SIZE / POOL_SIZE)
#if MAX_POOLS_IN_ARENA * POOL_SIZE != ARENA_SIZE
#   error "arena size not an exact multiple of pool size"
#endif

/*
 * -- End of tunable settings section --
 */

/*==========================================================================*/

/* When you say memory, my mind reasons in terms of (pointers to) blocks */
typedef uint8_t block;

/* Pool for small blocks. */
struct pool_header {
    union { block *_padding;
            uint count; } ref;          /* number of allocated blocks    */
    block *freeblock;                   /* pool's free list head         */
    struct pool_header *nextpool;       /* next pool of this size class  */
    struct pool_header *prevpool;       /* previous pool       ""        */
    uint arenaindex;                    /* index into arenas of base adr */
    uint szidx;                         /* block size class index        */
    uint nextoffset;                    /* bytes to virgin block         */
    uint maxnextoffset;                 /* largest valid nextoffset      */
};

typedef struct pool_header *poolp;

/* Record keeping for arenas. */
struct arena_object {
    /* The address of the arena, as returned by malloc.  Note that 0
     * will never be returned by a successful malloc, and is used
     * here to mark an arena_object that doesn't correspond to an
     * allocated arena.
     */
    uintptr_t address;

    /* Pool-aligned pointer to the next pool to be carved off. */
    block* pool_address;

    /* The number of available pools in the arena:  free pools + never-
     * allocated pools.
     */
    uint nfreepools;

    /* The total number of pools in the arena, whether or not available. */
    uint ntotalpools;

    /* Singly-linked list of available pools. */
    struct pool_header* freepools;

    /* Whenever this arena_object is not associated with an allocated
     * arena, the nextarena member is used to link all unassociated
     * arena_objects in the singly-linked `unused_arena_objects` list.
     * The prevarena member is unused in this case.
     *
     * When this arena_object is associated with an allocated arena
     * with at least one available pool, both members are used in the
     * doubly-linked `usable_arenas` list, which is maintained in
     * increasing order of `nfreepools` values.
     *
     * Else this arena_object is associated with an allocated arena
     * all of whose pools are in use.  `nextarena` and `prevarena`
     * are both meaningless in this case.
     */
    struct arena_object* nextarena;
    struct arena_object* prevarena;
};

#define POOL_OVERHEAD   _Py_SIZE_ROUND_UP(sizeof(struct pool_header), ALIGNMENT)

#define DUMMY_SIZE_IDX          0xffff  /* size class of newly cached pools */

/* Round pointer P down to the closest pool-aligned address <= P, as a poolp */
#define POOL_ADDR(P) ((poolp)_Py_ALIGN_DOWN((P), POOL_SIZE))

/* Return total number of blocks in pool of size index I, as a uint. */
#define NUMBLOCKS(I) ((uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I))

/*==========================================================================*/

/*
 * Pool table -- headed, circular, doubly-linked lists of partially used pools.

This is involved.  For an index i, usedpools[i+i] is the header for a list of
all partially used pools holding small blocks with "size class idx" i. So
usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size
16, and so on:  index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT.

Pools are carved off an arena's highwater mark (an arena_object's pool_address
member) as needed.  Once carved off, a pool is in one of three states forever
after:

used == partially used, neither empty nor full
    At least one block in the pool is currently allocated, and at least one
    block in the pool is not currently allocated (note this implies a pool
    has room for at least two blocks).
    This is a pool's initial state, as a pool is created only when malloc
    needs space.
    The pool holds blocks of a fixed size, and is in the circular list headed
    at usedpools[i] (see above).  It's linked to the other used pools of the
    same size class via the pool_header's nextpool and prevpool members.
    If all but one block is currently allocated, a malloc can cause a
    transition to the full state.  If all but one block is not currently
    allocated, a free can cause a transition to the empty state.

full == all the pool's blocks are currently allocated
    On transition to full, a pool is unlinked from its usedpools[] list.
    It's not linked to from anything then anymore, and its nextpool and
    prevpool members are meaningless until it transitions back to used.
    A free of a block in a full pool puts the pool back in the used state.
    Then it's linked in at the front of the appropriate usedpools[] list, so
    that the next allocation for its size class will reuse the freed block.

empty == all the pool's blocks are currently available for allocation
    On transition to empty, a pool is unlinked from its usedpools[] list,
    and linked to the front of its arena_object's singly-linked freepools list,
    via its nextpool member.  The prevpool member has no meaning in this case.
    Empty pools have no inherent size class:  the next time a malloc finds
    an empty list in usedpools[], it takes the first pool off of freepools.
    If the size class needed happens to be the same as the size class the pool
    last had, some pool initialization can be skipped.


Block Management

Blocks within pools are again carved out as needed.  pool->freeblock points to
the start of a singly-linked list of free blocks within the pool.  When a
block is freed, it's inserted at the front of its pool's freeblock list.  Note
that the available blocks in a pool are *not* linked all together when a pool
is initialized.  Instead only "the first two" (lowest addresses) blocks are
set up, returning the first such block, and setting pool->freeblock to a
one-block list holding the second such block.  This is consistent with that
pymalloc strives at all levels (arena, pool, and block) never to touch a piece
of memory until it's actually needed.

So long as a pool is in the used state, we're certain there *is* a block
available for allocating, and pool->freeblock is not NULL.  If pool->freeblock
points to the end of the free list before we've carved the entire pool into
blocks, that means we simply haven't yet gotten to one of the higher-address
blocks.  The offset from the pool_header to the start of "the next" virgin
block is stored in the pool_header nextoffset member, and the largest value
of nextoffset that makes sense is stored in the maxnextoffset member when a
pool is initialized.  All the blocks in a pool have been passed out at least
once when and only when nextoffset > maxnextoffset.


Major obscurity:  While the usedpools vector is declared to have poolp
entries, it doesn't really.  It really contains two pointers per (conceptual)
poolp entry, the nextpool and prevpool members of a pool_header.  The
excruciating initialization code below fools C so that

    usedpool[i+i]

"acts like" a genuine poolp, but only so long as you only reference its
nextpool and prevpool members.  The "- 2*sizeof(block *)" gibberish is
compensating for that a pool_header's nextpool and prevpool members
immediately follow a pool_header's first two members:

    union { block *_padding;
            uint count; } ref;
    block *freeblock;

each of which consume sizeof(block *) bytes.  So what usedpools[i+i] really
contains is a fudged-up pointer p such that *if* C believes it's a poolp
pointer, then p->nextpool and p->prevpool are both p (meaning that the headed
circular list is empty).

It's unclear why the usedpools setup is so convoluted.  It could be to
minimize the amount of cache required to hold this heavily-referenced table
(which only *needs* the two interpool pointer members of a pool_header). OTOH,
referencing code has to remember to "double the index" and doing so isn't
free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying
on that C doesn't insert any padding anywhere in a pool_header at or before
the prevpool member.
**************************************************************************** */

#define PTA(x)  ((poolp )((uint8_t *)&(usedpools[2*(x)]) - 2*sizeof(block *)))
#define PT(x)   PTA(x), PTA(x)

static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = {
    PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7)
#if NB_SMALL_SIZE_CLASSES > 8
    , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15)
#if NB_SMALL_SIZE_CLASSES > 16
    , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23)
#if NB_SMALL_SIZE_CLASSES > 24
    , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31)
#if NB_SMALL_SIZE_CLASSES > 32
    , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39)
#if NB_SMALL_SIZE_CLASSES > 40
    , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47)
#if NB_SMALL_SIZE_CLASSES > 48
    , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55)
#if NB_SMALL_SIZE_CLASSES > 56
    , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63)
#if NB_SMALL_SIZE_CLASSES > 64
#error "NB_SMALL_SIZE_CLASSES should be less than 64"
#endif /* NB_SMALL_SIZE_CLASSES > 64 */
#endif /* NB_SMALL_SIZE_CLASSES > 56 */
#endif /* NB_SMALL_SIZE_CLASSES > 48 */
#endif /* NB_SMALL_SIZE_CLASSES > 40 */
#endif /* NB_SMALL_SIZE_CLASSES > 32 */
#endif /* NB_SMALL_SIZE_CLASSES > 24 */
#endif /* NB_SMALL_SIZE_CLASSES > 16 */
#endif /* NB_SMALL_SIZE_CLASSES >  8 */
};

/*==========================================================================
Arena management.

`arenas` is a vector of arena_objects.  It contains maxarenas entries, some of
which may not be currently used (== they're arena_objects that aren't
currently associated with an allocated arena).  Note that arenas proper are
separately malloc'ed.

Prior to Python 2.5, arenas were never free()'ed.  Starting with Python 2.5,
we do try to free() arenas, and use some mild heuristic strategies to increase
the likelihood that arenas eventually can be freed.

unused_arena_objects

    This is a singly-linked list of the arena_objects that are currently not
    being used (no arena is associated with them).  Objects are taken off the
    head of the list in new_arena(), and are pushed on the head of the list in
    PyObject_Free() when the arena is empty.  Key invariant:  an arena_object
    is on this list if and only if its .address member is 0.

usable_arenas

    This is a doubly-linked list of the arena_objects associated with arenas
    that have pools available.  These pools are either waiting to be reused,
    or have not been used before.  The list is sorted to have the most-
    allocated arenas first (ascending order based on the nfreepools member).
    This means that the next allocation will come from a heavily used arena,
    which gives the nearly empty arenas a chance to be returned to the system.
    In my unscientific tests this dramatically improved the number of arenas
    that could be freed.

Note that an arena_object associated with an arena all of whose pools are
currently in use isn't on either list.

Changed in Python 3.8:  keeping usable_arenas sorted by number of free pools
used to be done by one-at-a-time linear search when an arena's number of
free pools changed.  That could, overall, consume time quadratic in the
number of arenas.  That didn't really matter when there were only a few
hundred arenas (typical!), but could be a timing disaster when there were
hundreds of thousands.  See bpo-37029.

Now we have a vector of "search fingers" to eliminate the need to search:
nfp2lasta[nfp] returns the last ("rightmost") arena in usable_arenas
with nfp free pools.  This is NULL if and only if there is no arena with
nfp free pools in usable_arenas.
*/

/* Array of objects used to track chunks of memory (arenas). */
static struct arena_object* arenas = NULL;
/* Number of slots currently allocated in the `arenas` vector. */
static uint maxarenas = 0;

/* The head of the singly-linked, NULL-terminated list of available
 * arena_objects.
 */
static struct arena_object* unused_arena_objects = NULL;

/* The head of the doubly-linked, NULL-terminated at each end, list of
 * arena_objects associated with arenas that have pools available.
 */
static struct arena_object* usable_arenas = NULL;

/* nfp2lasta[nfp] is the last arena in usable_arenas with nfp free pools */
static struct arena_object* nfp2lasta[MAX_POOLS_IN_ARENA + 1] = { NULL };

/* How many arena_objects do we initially allocate?
 * 16 = can allocate 16 arenas = 16 * ARENA_SIZE = 4MB before growing the
 * `arenas` vector.
 */
#define INITIAL_ARENA_OBJECTS 16

/* Number of arenas allocated that haven't been free()'d. */
static size_t narenas_currently_allocated = 0;

/* Total number of times malloc() called to allocate an arena. */
static size_t ntimes_arena_allocated = 0;
/* High water mark (max value ever seen) for narenas_currently_allocated. */
static size_t narenas_highwater = 0;

static Py_ssize_t raw_allocated_blocks;

Py_ssize_t
_Py_GetAllocatedBlocks(void)
{
    Py_ssize_t n = raw_allocated_blocks;
    /* add up allocated blocks for used pools */
    for (uint i = 0; i < maxarenas; ++i) {
        /* Skip arenas which are not allocated. */
        if (arenas[i].address == 0) {
            continue;
        }

        uintptr_t base = (uintptr_t)_Py_ALIGN_UP(arenas[i].address, POOL_SIZE);

        /* visit every pool in the arena */
        assert(base <= (uintptr_t) arenas[i].pool_address);
        for (; base < (uintptr_t) arenas[i].pool_address; base += POOL_SIZE) {
            poolp p = (poolp)base;
            n += p->ref.count;
        }
    }
    return n;
}

#if WITH_PYMALLOC_RADIX_TREE
/*==========================================================================*/
/* radix tree for tracking arena usage

   bit allocation for keys

   64-bit pointers and 2^20 arena size:
     16 -> ignored (POINTER_BITS - ADDRESS_BITS)
     10 -> MAP_TOP
     10 -> MAP_MID
      8 -> MAP_BOT
     20 -> ideal aligned arena
   ----
     64

   32-bit pointers and 2^18 arena size:
     14 -> MAP_BOT
     18 -> ideal aligned arena
   ----
     32

*/

#if SIZEOF_VOID_P == 8

/* number of bits in a pointer */
#define POINTER_BITS 64

/* Current 64-bit processors are limited to 48-bit physical addresses.  For
 * now, the top 17 bits of addresses will all be equal to bit 2**47.  If that
 * changes in the future, this must be adjusted upwards.
 */
#define ADDRESS_BITS 48

/* use the top and mid layers of the radix tree */
#define USE_INTERIOR_NODES

#elif SIZEOF_VOID_P == 4

#define POINTER_BITS 32
#define ADDRESS_BITS 32

#else

 /* Currently this code works for 64-bit or 32-bit pointers only.  */
#error "obmalloc radix tree requires 64-bit or 32-bit pointers."

#endif /* SIZEOF_VOID_P */

/* arena_coverage_t members require this to be true  */
#if ARENA_BITS >= 32
#   error "arena size must be < 2^32"
#endif

#ifdef USE_INTERIOR_NODES
/* number of bits used for MAP_TOP and MAP_MID nodes */
#define INTERIOR_BITS ((ADDRESS_BITS - ARENA_BITS + 2) / 3)
#else
#define INTERIOR_BITS 0
#endif

#define MAP_TOP_BITS INTERIOR_BITS
#define MAP_TOP_LENGTH (1 << MAP_TOP_BITS)
#define MAP_TOP_MASK (MAP_BOT_LENGTH - 1)

#define MAP_MID_BITS INTERIOR_BITS
#define MAP_MID_LENGTH (1 << MAP_MID_BITS)
#define MAP_MID_MASK (MAP_MID_LENGTH - 1)

#define MAP_BOT_BITS (ADDRESS_BITS - ARENA_BITS - 2*INTERIOR_BITS)
#define MAP_BOT_LENGTH (1 << MAP_BOT_BITS)
#define MAP_BOT_MASK (MAP_BOT_LENGTH - 1)

#define MAP_BOT_SHIFT ARENA_BITS
#define MAP_MID_SHIFT (MAP_BOT_BITS + MAP_BOT_SHIFT)
#define MAP_TOP_SHIFT (MAP_MID_BITS + MAP_MID_SHIFT)

#define AS_UINT(p) ((uintptr_t)(p))
#define MAP_BOT_INDEX(p) ((AS_UINT(p) >> MAP_BOT_SHIFT) & MAP_BOT_MASK)
#define MAP_MID_INDEX(p) ((AS_UINT(p) >> MAP_MID_SHIFT) & MAP_MID_MASK)
#define MAP_TOP_INDEX(p) ((AS_UINT(p) >> MAP_TOP_SHIFT) & MAP_TOP_MASK)

#if ADDRESS_BITS > POINTER_BITS
/* Return non-physical address bits of a pointer.  Those bits should be same
 * for all valid pointers if ADDRESS_BITS set correctly.  Linux has support for
 * 57-bit address space (Intel 5-level paging) but will not currently give
 * those addresses to user space.
 */
#define HIGH_BITS(p) (AS_UINT(p) >> ADDRESS_BITS)
#else
#define HIGH_BITS(p) 0
#endif


/* This is the leaf of the radix tree.  See arena_map_mark_used() for the
 * meaning of these members. */
typedef struct {
    int32_t tail_hi;
    int32_t tail_lo;
} arena_coverage_t;

typedef struct arena_map_bot {
    /* The members tail_hi and tail_lo are accessed together.  So, it
     * better to have them as an array of structs, rather than two
     * arrays.
     */
    arena_coverage_t arenas[MAP_BOT_LENGTH];
} arena_map_bot_t;

#ifdef USE_INTERIOR_NODES
typedef struct arena_map_mid {
    struct arena_map_bot *ptrs[MAP_MID_LENGTH];
} arena_map_mid_t;

typedef struct arena_map_top {
    struct arena_map_mid *ptrs[MAP_TOP_LENGTH];
} arena_map_top_t;
#endif

/* The root of radix tree.  Note that by initializing like this, the memory
 * should be in the BSS.  The OS will only memory map pages as the MAP_MID
 * nodes get used (OS pages are demand loaded as needed).
 */
#ifdef USE_INTERIOR_NODES
static arena_map_top_t arena_map_root;
/* accounting for number of used interior nodes */
static int arena_map_mid_count;
static int arena_map_bot_count;
#else
static arena_map_bot_t arena_map_root;
#endif

/* Return a pointer to a bottom tree node, return NULL if it doesn't exist or
 * it cannot be created */
static arena_map_bot_t *
arena_map_get(block *p, int create)
{
#ifdef USE_INTERIOR_NODES
    /* sanity check that ADDRESS_BITS is correct */
    assert(HIGH_BITS(p) == HIGH_BITS(&arena_map_root));
    int i1 = MAP_TOP_INDEX(p);
    if (arena_map_root.ptrs[i1] == NULL) {
        if (!create) {
            return NULL;
        }
        arena_map_mid_t *n = PyMem_RawCalloc(1, sizeof(arena_map_mid_t));
        if (n == NULL) {
            return NULL;
        }
        arena_map_root.ptrs[i1] = n;
        arena_map_mid_count++;
    }
    int i2 = MAP_MID_INDEX(p);
    if (arena_map_root.ptrs[i1]->ptrs[i2] == NULL) {
        if (!create) {
            return NULL;
        }
        arena_map_bot_t *n = PyMem_RawCalloc(1, sizeof(arena_map_bot_t));
        if (n == NULL) {
            return NULL;
        }
        arena_map_root.ptrs[i1]->ptrs[i2] = n;
        arena_map_bot_count++;
    }
    return arena_map_root.ptrs[i1]->ptrs[i2];
#else
    return &arena_map_root;
#endif
}


/* The radix tree only tracks arenas.  So, for 16 MiB arenas, we throw
 * away 24 bits of the address.  That reduces the space requirement of
 * the tree compared to similar radix tree page-map schemes.  In
 * exchange for slashing the space requirement, it needs more
 * computation to check an address.
 *
 * Tracking coverage is done by "ideal" arena address.  It is easier to
 * explain in decimal so let's say that the arena size is 100 bytes.
 * Then, ideal addresses are 100, 200, 300, etc.  For checking if a
 * pointer address is inside an actual arena, we have to check two ideal
 * arena addresses.  E.g. if pointer is 357, we need to check 200 and
 * 300.  In the rare case that an arena is aligned in the ideal way
 * (e.g. base address of arena is 200) then we only have to check one
 * ideal address.
 *
 * The tree nodes for 200 and 300 both store the address of arena.
 * There are two cases: the arena starts at a lower ideal arena and
 * extends to this one, or the arena starts in this arena and extends to
 * the next ideal arena.  The tail_lo and tail_hi members correspond to
 * these two cases.
 */


/* mark or unmark addresses covered by arena */
static int
arena_map_mark_used(uintptr_t arena_base, int is_used)
{
    /* sanity check that ADDRESS_BITS is correct */
    assert(HIGH_BITS(arena_base) == HIGH_BITS(&arena_map_root));
    arena_map_bot_t *n_hi = arena_map_get((block *)arena_base, is_used);
    if (n_hi == NULL) {
        assert(is_used); /* otherwise node should already exist */
        return 0; /* failed to allocate space for node */
    }
    int i3 = MAP_BOT_INDEX((block *)arena_base);
    int32_t tail = (int32_t)(arena_base & ARENA_SIZE_MASK);
    if (tail == 0) {
        /* is ideal arena address */
        n_hi->arenas[i3].tail_hi = is_used ? -1 : 0;
    }
    else {
        /* arena_base address is not ideal (aligned to arena size) and
         * so it potentially covers two MAP_BOT nodes.  Get the MAP_BOT node
         * for the next arena.  Note that it might be in different MAP_TOP
         * and MAP_MID nodes as well so we need to call arena_map_get()
         * again (do the full tree traversal).
         */
        n_hi->arenas[i3].tail_hi = is_used ? tail : 0;
        uintptr_t arena_base_next = arena_base + ARENA_SIZE;
        /* If arena_base is a legit arena address, so is arena_base_next - 1
         * (last address in arena).  If arena_base_next overflows then it
         * must overflow to 0.  However, that would mean arena_base was
         * "ideal" and we should not be in this case. */
        assert(arena_base < arena_base_next);
        arena_map_bot_t *n_lo = arena_map_get((block *)arena_base_next, is_used);
        if (n_lo == NULL) {
            assert(is_used); /* otherwise should already exist */
            n_hi->arenas[i3].tail_hi = 0;
            return 0; /* failed to allocate space for node */
        }
        int i3_next = MAP_BOT_INDEX(arena_base_next);
        n_lo->arenas[i3_next].tail_lo = is_used ? tail : 0;
    }
    return 1;
}

/* Return true if 'p' is a pointer inside an obmalloc arena.
 * _PyObject_Free() calls this so it needs to be very fast. */
static int
arena_map_is_used(block *p)
{
    arena_map_bot_t *n = arena_map_get(p, 0);
    if (n == NULL) {
        return 0;
    }
    int i3 = MAP_BOT_INDEX(p);
    /* ARENA_BITS must be < 32 so that the tail is a non-negative int32_t. */
    int32_t hi = n->arenas[i3].tail_hi;
    int32_t lo = n->arenas[i3].tail_lo;
    int32_t tail = (int32_t)(AS_UINT(p) & ARENA_SIZE_MASK);
    return (tail < lo) || (tail >= hi && hi != 0);
}

/* end of radix tree logic */
/*==========================================================================*/
#endif /* WITH_PYMALLOC_RADIX_TREE */


/* Allocate a new arena.  If we run out of memory, return NULL.  Else
 * allocate a new arena, and return the address of an arena_object
 * describing the new arena.  It's expected that the caller will set
 * `usable_arenas` to the return value.
 */
static struct arena_object*
new_arena(void)
{
    struct arena_object* arenaobj;
    uint excess;        /* number of bytes above pool alignment */
    void *address;
    static int debug_stats = -1;

    if (debug_stats == -1) {
        const char *opt = Py_GETENV("PYTHONMALLOCSTATS");
        debug_stats = (opt != NULL && *opt != '\0');
    }
    if (debug_stats)
        _PyObject_DebugMallocStats(stderr);

    if (unused_arena_objects == NULL) {
        uint i;
        uint numarenas;
        size_t nbytes;

        /* Double the number of arena objects on each allocation.
         * Note that it's possible for `numarenas` to overflow.
         */
        numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS;
        if (numarenas <= maxarenas)
            return NULL;                /* overflow */
#if SIZEOF_SIZE_T <= SIZEOF_INT
        if (numarenas > SIZE_MAX / sizeof(*arenas))
            return NULL;                /* overflow */
#endif
        nbytes = numarenas * sizeof(*arenas);
        arenaobj = (struct arena_object *)PyMem_RawRealloc(arenas, nbytes);
        if (arenaobj == NULL)
            return NULL;
        arenas = arenaobj;

        /* We might need to fix pointers that were copied.  However,
         * new_arena only gets called when all the pages in the
         * previous arenas are full.  Thus, there are *no* pointers
         * into the old array. Thus, we don't have to worry about
         * invalid pointers.  Just to be sure, some asserts:
         */
        assert(usable_arenas == NULL);
        assert(unused_arena_objects == NULL);

        /* Put the new arenas on the unused_arena_objects list. */
        for (i = maxarenas; i < numarenas; ++i) {
            arenas[i].address = 0;              /* mark as unassociated */
            arenas[i].nextarena = i < numarenas - 1 ?
                                   &arenas[i+1] : NULL;
        }

        /* Update globals. */
        unused_arena_objects = &arenas[maxarenas];
        maxarenas = numarenas;
    }

    /* Take the next available arena object off the head of the list. */
    assert(unused_arena_objects != NULL);
    arenaobj = unused_arena_objects;
    unused_arena_objects = arenaobj->nextarena;
    assert(arenaobj->address == 0);
    address = _PyObject_Arena.alloc(_PyObject_Arena.ctx, ARENA_SIZE);
#if WITH_PYMALLOC_RADIX_TREE
    if (address != NULL) {
        if (!arena_map_mark_used((uintptr_t)address, 1)) {
            /* marking arena in radix tree failed, abort */
            _PyObject_Arena.free(_PyObject_Arena.ctx, address, ARENA_SIZE);
            address = NULL;
        }
    }
#endif
    if (address == NULL) {
        /* The allocation failed: return NULL after putting the
         * arenaobj back.
         */
        arenaobj->nextarena = unused_arena_objects;
        unused_arena_objects = arenaobj;
        return NULL;
    }
    arenaobj->address = (uintptr_t)address;

    ++narenas_currently_allocated;
    ++ntimes_arena_allocated;
    if (narenas_currently_allocated > narenas_highwater)
        narenas_highwater = narenas_currently_allocated;
    arenaobj->freepools = NULL;
    /* pool_address <- first pool-aligned address in the arena
       nfreepools <- number of whole pools that fit after alignment */
    arenaobj->pool_address = (block*)arenaobj->address;
    arenaobj->nfreepools = MAX_POOLS_IN_ARENA;
    excess = (uint)(arenaobj->address & POOL_SIZE_MASK);
    if (excess != 0) {
        --arenaobj->nfreepools;
        arenaobj->pool_address += POOL_SIZE - excess;
    }
    arenaobj->ntotalpools = arenaobj->nfreepools;

    return arenaobj;
}



#if WITH_PYMALLOC_RADIX_TREE
/* Return true if and only if P is an address that was allocated by
   pymalloc.  When the radix tree is used, 'poolp' is unused.
 */
static bool
address_in_range(void *p, poolp pool)
{
    return arena_map_is_used(p);
}
#else
/*
address_in_range(P, POOL)

Return true if and only if P is an address that was allocated by pymalloc.
POOL must be the pool address associated with P, i.e., POOL = POOL_ADDR(P)
(the caller is asked to compute this because the macro expands POOL more than
once, and for efficiency it's best for the caller to assign POOL_ADDR(P) to a
variable and pass the latter to the macro; because address_in_range is
called on every alloc/realloc/free, micro-efficiency is important here).

Tricky:  Let B be the arena base address associated with the pool, B =
arenas[(POOL)->arenaindex].address.  Then P belongs to the arena if and only if

    B <= P < B + ARENA_SIZE

Subtracting B throughout, this is true iff

    0 <= P-B < ARENA_SIZE

By using unsigned arithmetic, the "0 <=" half of the test can be skipped.

Obscure:  A PyMem "free memory" function can call the pymalloc free or realloc
before the first arena has been allocated.  `arenas` is still NULL in that
case.  We're relying on that maxarenas is also 0 in that case, so that
(POOL)->arenaindex < maxarenas  must be false, saving us from trying to index
into a NULL arenas.

Details:  given P and POOL, the arena_object corresponding to P is AO =
arenas[(POOL)->arenaindex].  Suppose obmalloc controls P.  Then (barring wild
stores, etc), POOL is the correct address of P's pool, AO.address is the
correct base address of the pool's arena, and P must be within ARENA_SIZE of
AO.address.  In addition, AO.address is not 0 (no arena can start at address 0
(NULL)).  Therefore address_in_range correctly reports that obmalloc
controls P.

Now suppose obmalloc does not control P (e.g., P was obtained via a direct
call to the system malloc() or realloc()).  (POOL)->arenaindex may be anything
in this case -- it may even be uninitialized trash.  If the trash arenaindex
is >= maxarenas, the macro correctly concludes at once that obmalloc doesn't
control P.

Else arenaindex is < maxarena, and AO is read up.  If AO corresponds to an
allocated arena, obmalloc controls all the memory in slice AO.address :
AO.address+ARENA_SIZE.  By case assumption, P is not controlled by obmalloc,
so P doesn't lie in that slice, so the macro correctly reports that P is not
controlled by obmalloc.

Finally, if P is not controlled by obmalloc and AO corresponds to an unused
arena_object (one not currently associated with an allocated arena),
AO.address is 0, and the second test in the macro reduces to:

    P < ARENA_SIZE

If P >= ARENA_SIZE (extremely likely), the macro again correctly concludes
that P is not controlled by obmalloc.  However, if P < ARENA_SIZE, this part
of the test still passes, and the third clause (AO.address != 0) is necessary
to get the correct result:  AO.address is 0 in this case, so the macro
correctly reports that P is not controlled by obmalloc (despite that P lies in
slice AO.address : AO.address + ARENA_SIZE).

Note:  The third (AO.address != 0) clause was added in Python 2.5.  Before
2.5, arenas were never free()'ed, and an arenaindex < maxarena always
corresponded to a currently-allocated arena, so the "P is not controlled by
obmalloc, AO corresponds to an unused arena_object, and P < ARENA_SIZE" case
was impossible.

Note that the logic is excruciating, and reading up possibly uninitialized
memory when P is not controlled by obmalloc (to get at (POOL)->arenaindex)
creates problems for some memory debuggers.  The overwhelming advantage is
that this test determines whether an arbitrary address is controlled by
obmalloc in a small constant time, independent of the number of arenas
obmalloc controls.  Since this test is needed at every entry point, it's
extremely desirable that it be this fast.
*/

static bool _Py_NO_SANITIZE_ADDRESS
            _Py_NO_SANITIZE_THREAD
            _Py_NO_SANITIZE_MEMORY
address_in_range(void *p, poolp pool)
{
    // Since address_in_range may be reading from memory which was not allocated
    // by Python, it is important that pool->arenaindex is read only once, as
    // another thread may be concurrently modifying the value without holding
    // the GIL. The following dance forces the compiler to read pool->arenaindex
    // only once.
    uint arenaindex = *((volatile uint *)&pool->arenaindex);
    return arenaindex < maxarenas &&
        (uintptr_t)p - arenas[arenaindex].address < ARENA_SIZE &&
        arenas[arenaindex].address != 0;
}

#endif /* !WITH_PYMALLOC_RADIX_TREE */

/*==========================================================================*/

// Called when freelist is exhausted.  Extend the freelist if there is
// space for a block.  Otherwise, remove this pool from usedpools.
static void
pymalloc_pool_extend(poolp pool, uint size)
{
    if (UNLIKELY(pool->nextoffset <= pool->maxnextoffset)) {
        /* There is room for another block. */
        pool->freeblock = (block*)pool + pool->nextoffset;
        pool->nextoffset += INDEX2SIZE(size);
        *(block **)(pool->freeblock) = NULL;
        return;
    }

    /* Pool is full, unlink from used pools. */
    poolp next;
    next = pool->nextpool;
    pool = pool->prevpool;
    next->prevpool = pool;
    pool->nextpool = next;
}

/* called when pymalloc_alloc can not allocate a block from usedpool.
 * This function takes new pool and allocate a block from it.
 */
static void*
allocate_from_new_pool(uint size)
{
    /* There isn't a pool of the right size class immediately
     * available:  use a free pool.
     */
    if (UNLIKELY(usable_arenas == NULL)) {
        /* No arena has a free pool:  allocate a new arena. */
#ifdef WITH_MEMORY_LIMITS
        if (narenas_currently_allocated >= MAX_ARENAS) {
            return NULL;
        }
#endif
        usable_arenas = new_arena();
        if (usable_arenas == NULL) {
            return NULL;
        }
        usable_arenas->nextarena = usable_arenas->prevarena = NULL;
        assert(nfp2lasta[usable_arenas->nfreepools] == NULL);
        nfp2lasta[usable_arenas->nfreepools] = usable_arenas;
    }
    assert(usable_arenas->address != 0);

    /* This arena already had the smallest nfreepools value, so decreasing
     * nfreepools doesn't change that, and we don't need to rearrange the
     * usable_arenas list.  However, if the arena becomes wholly allocated,
     * we need to remove its arena_object from usable_arenas.
     */
    assert(usable_arenas->nfreepools > 0);
    if (nfp2lasta[usable_arenas->nfreepools] == usable_arenas) {
        /* It's the last of this size, so there won't be any. */
        nfp2lasta[usable_arenas->nfreepools] = NULL;
    }
    /* If any free pools will remain, it will be the new smallest. */
    if (usable_arenas->nfreepools > 1) {
        assert(nfp2lasta[usable_arenas->nfreepools - 1] == NULL);
        nfp2lasta[usable_arenas->nfreepools - 1] = usable_arenas;
    }

    /* Try to get a cached free pool. */
    poolp pool = usable_arenas->freepools;
    if (LIKELY(pool != NULL)) {
        /* Unlink from cached pools. */
        usable_arenas->freepools = pool->nextpool;
        usable_arenas->nfreepools--;
        if (UNLIKELY(usable_arenas->nfreepools == 0)) {
            /* Wholly allocated:  remove. */
            assert(usable_arenas->freepools == NULL);
            assert(usable_arenas->nextarena == NULL ||
                   usable_arenas->nextarena->prevarena ==
                   usable_arenas);
            usable_arenas = usable_arenas->nextarena;
            if (usable_arenas != NULL) {
                usable_arenas->prevarena = NULL;
                assert(usable_arenas->address != 0);
            }
        }
        else {
            /* nfreepools > 0:  it must be that freepools
             * isn't NULL, or that we haven't yet carved
             * off all the arena's pools for the first
             * time.
             */
            assert(usable_arenas->freepools != NULL ||
                   usable_arenas->pool_address <=
                   (block*)usable_arenas->address +
                       ARENA_SIZE - POOL_SIZE);
        }
    }
    else {
        /* Carve off a new pool. */
        assert(usable_arenas->nfreepools > 0);
        assert(usable_arenas->freepools == NULL);
        pool = (poolp)usable_arenas->pool_address;
        assert((block*)pool <= (block*)usable_arenas->address +
                                 ARENA_SIZE - POOL_SIZE);
        pool->arenaindex = (uint)(usable_arenas - arenas);
        assert(&arenas[pool->arenaindex] == usable_arenas);
        pool->szidx = DUMMY_SIZE_IDX;
        usable_arenas->pool_address += POOL_SIZE;
        --usable_arenas->nfreepools;

        if (usable_arenas->nfreepools == 0) {
            assert(usable_arenas->nextarena == NULL ||
                   usable_arenas->nextarena->prevarena ==
                   usable_arenas);
            /* Unlink the arena:  it is completely allocated. */
            usable_arenas = usable_arenas->nextarena;
            if (usable_arenas != NULL) {
                usable_arenas->prevarena = NULL;
                assert(usable_arenas->address != 0);
            }
        }
    }

    /* Frontlink to used pools. */
    block *bp;
    poolp next = usedpools[size + size]; /* == prev */
    pool->nextpool = next;
    pool->prevpool = next;
    next->nextpool = pool;
    next->prevpool = pool;
    pool->ref.count = 1;
    if (pool->szidx == size) {
        /* Luckily, this pool last contained blocks
         * of the same size class, so its header
         * and free list are already initialized.
         */
        bp = pool->freeblock;
        assert(bp != NULL);
        pool->freeblock = *(block **)bp;
        return bp;
    }
    /*
     * Initialize the pool header, set up the free list to
     * contain just the second block, and return the first
     * block.
     */
    pool->szidx = size;
    size = INDEX2SIZE(size);
    bp = (block *)pool + POOL_OVERHEAD;
    pool->nextoffset = POOL_OVERHEAD + (size << 1);
    pool->maxnextoffset = POOL_SIZE - size;
    pool->freeblock = bp + size;
    *(block **)(pool->freeblock) = NULL;
    return bp;
}

/* pymalloc allocator

   Return a pointer to newly allocated memory if pymalloc allocated memory.

   Return NULL if pymalloc failed to allocate the memory block: on bigger
   requests, on error in the code below (as a last chance to serve the request)
   or when the max memory limit has been reached.
*/
static inline void*
pymalloc_alloc(void *ctx, size_t nbytes)
{
#ifdef WITH_VALGRIND
    if (UNLIKELY(running_on_valgrind == -1)) {
        running_on_valgrind = RUNNING_ON_VALGRIND;
    }
    if (UNLIKELY(running_on_valgrind)) {
        return NULL;
    }
#endif

    if (UNLIKELY(nbytes == 0)) {
        return NULL;
    }
    if (UNLIKELY(nbytes > SMALL_REQUEST_THRESHOLD)) {
        return NULL;
    }

    uint size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT;
    poolp pool = usedpools[size + size];
    block *bp;

    if (LIKELY(pool != pool->nextpool)) {
        /*
         * There is a used pool for this size class.
         * Pick up the head block of its free list.
         */
        ++pool->ref.count;
        bp = pool->freeblock;
        assert(bp != NULL);

        if (UNLIKELY((pool->freeblock = *(block **)bp) == NULL)) {
            // Reached the end of the free list, try to extend it.
            pymalloc_pool_extend(pool, size);
        }
    }
    else {
        /* There isn't a pool of the right size class immediately
         * available:  use a free pool.
         */
        bp = allocate_from_new_pool(size);
    }

    return (void *)bp;
}


static void *
_PyObject_Malloc(void *ctx, size_t nbytes)
{
    void* ptr = pymalloc_alloc(ctx, nbytes);
    if (LIKELY(ptr != NULL)) {
        return ptr;
    }

    ptr = PyMem_RawMalloc(nbytes);
    if (ptr != NULL) {
        raw_allocated_blocks++;
    }
    return ptr;
}


static void *
_PyObject_Calloc(void *ctx, size_t nelem, size_t elsize)
{
    assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize);
    size_t nbytes = nelem * elsize;

    void* ptr = pymalloc_alloc(ctx, nbytes);
    if (LIKELY(ptr != NULL)) {
        memset(ptr, 0, nbytes);
        return ptr;
    }

    ptr = PyMem_RawCalloc(nelem, elsize);
    if (ptr != NULL) {
        raw_allocated_blocks++;
    }
    return ptr;
}


static void
insert_to_usedpool(poolp pool)
{
    assert(pool->ref.count > 0);            /* else the pool is empty */

    uint size = pool->szidx;
    poolp next = usedpools[size + size];
    poolp prev = next->prevpool;

    /* insert pool before next:   prev <-> pool <-> next */
    pool->nextpool = next;
    pool->prevpool = prev;
    next->prevpool = pool;
    prev->nextpool = pool;
}

static void
insert_to_freepool(poolp pool)
{
    poolp next = pool->nextpool;
    poolp prev = pool->prevpool;
    next->prevpool = prev;
    prev->nextpool = next;

    /* Link the pool to freepools.  This is a singly-linked
     * list, and pool->prevpool isn't used there.
     */
    struct arena_object *ao = &arenas[pool->arenaindex];
    pool->nextpool = ao->freepools;
    ao->freepools = pool;
    uint nf = ao->nfreepools;
    /* If this is the rightmost arena with this number of free pools,
     * nfp2lasta[nf] needs to change.  Caution:  if nf is 0, there
     * are no arenas in usable_arenas with that value.
     */
    struct arena_object* lastnf = nfp2lasta[nf];
    assert((nf == 0 && lastnf == NULL) ||
           (nf > 0 &&
            lastnf != NULL &&
            lastnf->nfreepools == nf &&
            (lastnf->nextarena == NULL ||
             nf < lastnf->nextarena->nfreepools)));
    if (lastnf == ao) {  /* it is the rightmost */
        struct arena_object* p = ao->prevarena;
        nfp2lasta[nf] = (p != NULL && p->nfreepools == nf) ? p : NULL;
    }
    ao->nfreepools = ++nf;

    /* All the rest is arena management.  We just freed
     * a pool, and there are 4 cases for arena mgmt:
     * 1. If all the pools are free, return the arena to
     *    the system free().  Except if this is the last
     *    arena in the list, keep it to avoid thrashing:
     *    keeping one wholly free arena in the list avoids
     *    pathological cases where a simple loop would
     *    otherwise provoke needing to allocate and free an
     *    arena on every iteration.  See bpo-37257.
     * 2. If this is the only free pool in the arena,
     *    add the arena back to the `usable_arenas` list.
     * 3. If the "next" arena has a smaller count of free
     *    pools, we have to "slide this arena right" to
     *    restore that usable_arenas is sorted in order of
     *    nfreepools.
     * 4. Else there's nothing more to do.
     */
    if (nf == ao->ntotalpools && ao->nextarena != NULL) {
        /* Case 1.  First unlink ao from usable_arenas.
         */
        assert(ao->prevarena == NULL ||
               ao->prevarena->address != 0);
        assert(ao ->nextarena == NULL ||
               ao->nextarena->address != 0);

        /* Fix the pointer in the prevarena, or the
         * usable_arenas pointer.
         */
        if (ao->prevarena == NULL) {
            usable_arenas = ao->nextarena;
            assert(usable_arenas == NULL ||
                   usable_arenas->address != 0);
        }
        else {
            assert(ao->prevarena->nextarena == ao);
            ao->prevarena->nextarena =
                ao->nextarena;
        }
        /* Fix the pointer in the nextarena. */
        if (ao->nextarena != NULL) {
            assert(ao->nextarena->prevarena == ao);
            ao->nextarena->prevarena =
                ao->prevarena;
        }
        /* Record that this arena_object slot is
         * available to be reused.
         */
        ao->nextarena = unused_arena_objects;
        unused_arena_objects = ao;

#if WITH_PYMALLOC_RADIX_TREE
        /* mark arena region as not under control of obmalloc */
        arena_map_mark_used(ao->address, 0);
#endif

        /* Free the entire arena. */
        _PyObject_Arena.free(_PyObject_Arena.ctx,
                             (void *)ao->address, ARENA_SIZE);
        ao->address = 0;                        /* mark unassociated */
        --narenas_currently_allocated;

        return;
    }

    if (nf == 1) {
        /* Case 2.  Put ao at the head of
         * usable_arenas.  Note that because
         * ao->nfreepools was 0 before, ao isn't
         * currently on the usable_arenas list.
         */
        ao->nextarena = usable_arenas;
        ao->prevarena = NULL;
        if (usable_arenas)
            usable_arenas->prevarena = ao;
        usable_arenas = ao;
        assert(usable_arenas->address != 0);
        if (nfp2lasta[1] == NULL) {
            nfp2lasta[1] = ao;
        }

        return;
    }

    /* If this arena is now out of order, we need to keep
     * the list sorted.  The list is kept sorted so that
     * the "most full" arenas are used first, which allows
     * the nearly empty arenas to be completely freed.  In
     * a few un-scientific tests, it seems like this
     * approach allowed a lot more memory to be freed.
     */
    /* If this is the only arena with nf, record that. */
    if (nfp2lasta[nf] == NULL) {
        nfp2lasta[nf] = ao;
    } /* else the rightmost with nf doesn't change */
    /* If this was the rightmost of the old size, it remains in place. */
    if (ao == lastnf) {
        /* Case 4.  Nothing to do. */
        return;
    }
    /* If ao were the only arena in the list, the last block would have
     * gotten us out.
     */
    assert(ao->nextarena != NULL);

    /* Case 3:  We have to move the arena towards the end of the list,
     * because it has more free pools than the arena to its right.  It needs
     * to move to follow lastnf.
     * First unlink ao from usable_arenas.
     */
    if (ao->prevarena != NULL) {
        /* ao isn't at the head of the list */
        assert(ao->prevarena->nextarena == ao);
        ao->prevarena->nextarena = ao->nextarena;
    }
    else {
        /* ao is at the head of the list */
        assert(usable_arenas == ao);
        usable_arenas = ao->nextarena;
    }
    ao->nextarena->prevarena = ao->prevarena;
    /* And insert after lastnf. */
    ao->prevarena = lastnf;
    ao->nextarena = lastnf->nextarena;
    if (ao->nextarena != NULL) {
        ao->nextarena->prevarena = ao;
    }
    lastnf->nextarena = ao;
    /* Verify that the swaps worked. */
    assert(ao->nextarena == NULL || nf <= ao->nextarena->nfreepools);
    assert(ao->prevarena == NULL || nf > ao->prevarena->nfreepools);
    assert(ao->nextarena == NULL || ao->nextarena->prevarena == ao);
    assert((usable_arenas == ao && ao->prevarena == NULL)
           || ao->prevarena->nextarena == ao);
}

/* Free a memory block allocated by pymalloc_alloc().
   Return 1 if it was freed.
   Return 0 if the block was not allocated by pymalloc_alloc(). */
static inline int
pymalloc_free(void *ctx, void *p)
{
    assert(p != NULL);

#ifdef WITH_VALGRIND
    if (UNLIKELY(running_on_valgrind > 0)) {
        return 0;
    }
#endif

    poolp pool = POOL_ADDR(p);
    if (UNLIKELY(!address_in_range(p, pool))) {
        return 0;
    }
    /* We allocated this address. */

    /* Link p to the start of the pool's freeblock list.  Since
     * the pool had at least the p block outstanding, the pool
     * wasn't empty (so it's already in a usedpools[] list, or
     * was full and is in no list -- it's not in the freeblocks
     * list in any case).
     */
    assert(pool->ref.count > 0);            /* else it was empty */
    block *lastfree = pool->freeblock;
    *(block **)p = lastfree;
    pool->freeblock = (block *)p;
    pool->ref.count--;

    if (UNLIKELY(lastfree == NULL)) {
        /* Pool was full, so doesn't currently live in any list:
         * link it to the front of the appropriate usedpools[] list.
         * This mimics LRU pool usage for new allocations and
         * targets optimal filling when several pools contain
         * blocks of the same size class.
         */
        insert_to_usedpool(pool);
        return 1;
    }

    /* freeblock wasn't NULL, so the pool wasn't full,
     * and the pool is in a usedpools[] list.
     */
    if (LIKELY(pool->ref.count != 0)) {
        /* pool isn't empty:  leave it in usedpools */
        return 1;
    }

    /* Pool is now empty:  unlink from usedpools, and
     * link to the front of freepools.  This ensures that
     * previously freed pools will be allocated later
     * (being not referenced, they are perhaps paged out).
     */
    insert_to_freepool(pool);
    return 1;
}


static void
_PyObject_Free(void *ctx, void *p)
{
    /* PyObject_Free(NULL) has no effect */
    if (p == NULL) {
        return;
    }

    if (UNLIKELY(!pymalloc_free(ctx, p))) {
        /* pymalloc didn't allocate this address */
        PyMem_RawFree(p);
        raw_allocated_blocks--;
    }
}


/* pymalloc realloc.

   If nbytes==0, then as the Python docs promise, we do not treat this like
   free(p), and return a non-NULL result.

   Return 1 if pymalloc reallocated memory and wrote the new pointer into
   newptr_p.

   Return 0 if pymalloc didn't allocated p. */
static int
pymalloc_realloc(void *ctx, void **newptr_p, void *p, size_t nbytes)
{
    void *bp;
    poolp pool;
    size_t size;

    assert(p != NULL);

#ifdef WITH_VALGRIND
    /* Treat running_on_valgrind == -1 the same as 0 */
    if (UNLIKELY(running_on_valgrind > 0)) {
        return 0;
    }
#endif

    pool = POOL_ADDR(p);
    if (!address_in_range(p, pool)) {
        /* pymalloc is not managing this block.

           If nbytes <= SMALL_REQUEST_THRESHOLD, it's tempting to try to take
           over this block.  However, if we do, we need to copy the valid data
           from the C-managed block to one of our blocks, and there's no
           portable way to know how much of the memory space starting at p is
           valid.

           As bug 1185883 pointed out the hard way, it's possible that the
           C-managed block is "at the end" of allocated VM space, so that a
           memory fault can occur if we try to copy nbytes bytes starting at p.
           Instead we punt: let C continue to manage this block. */
        return 0;
    }

    /* pymalloc is in charge of this block */
    size = INDEX2SIZE(pool->szidx);
    if (nbytes <= size) {
        /* The block is staying the same or shrinking.

           If it's shrinking, there's a tradeoff: it costs cycles to copy the
           block to a smaller size class, but it wastes memory not to copy it.

           The compromise here is to copy on shrink only if at least 25% of
           size can be shaved off. */
        if (4 * nbytes > 3 * size) {
            /* It's the same, or shrinking and new/old > 3/4. */
            *newptr_p = p;
            return 1;
        }
        size = nbytes;
    }

    bp = _PyObject_Malloc(ctx, nbytes);
    if (bp != NULL) {
        memcpy(bp, p, size);
        _PyObject_Free(ctx, p);
    }
    *newptr_p = bp;
    return 1;
}


static void *
_PyObject_Realloc(void *ctx, void *ptr, size_t nbytes)
{
    void *ptr2;

    if (ptr == NULL) {
        return _PyObject_Malloc(ctx, nbytes);
    }

    if (pymalloc_realloc(ctx, &ptr2, ptr, nbytes)) {
        return ptr2;
    }

    return PyMem_RawRealloc(ptr, nbytes);
}

#else   /* ! WITH_PYMALLOC */

/*==========================================================================*/
/* pymalloc not enabled:  Redirect the entry points to malloc.  These will
 * only be used by extensions that are compiled with pymalloc enabled. */

Py_ssize_t
_Py_GetAllocatedBlocks(void)
{
    return 0;
}

#endif /* WITH_PYMALLOC */


/*==========================================================================*/
/* A x-platform debugging allocator.  This doesn't manage memory directly,
 * it wraps a real allocator, adding extra debugging info to the memory blocks.
 */

/* Uncomment this define to add the "serialno" field */
/* #define PYMEM_DEBUG_SERIALNO */

#ifdef PYMEM_DEBUG_SERIALNO
static size_t serialno = 0;     /* incremented on each debug {m,re}alloc */

/* serialno is always incremented via calling this routine.  The point is
 * to supply a single place to set a breakpoint.
 */
static void
bumpserialno(void)
{
    ++serialno;
}
#endif

#define SST SIZEOF_SIZE_T

#ifdef PYMEM_DEBUG_SERIALNO
#  define PYMEM_DEBUG_EXTRA_BYTES 4 * SST
#else
#  define PYMEM_DEBUG_EXTRA_BYTES 3 * SST
#endif

/* Read sizeof(size_t) bytes at p as a big-endian size_t. */
static size_t
read_size_t(const void *p)
{
    const uint8_t *q = (const uint8_t *)p;
    size_t result = *q++;
    int i;

    for (i = SST; --i > 0; ++q)
        result = (result << 8) | *q;
    return result;
}

/* Write n as a big-endian size_t, MSB at address p, LSB at
 * p + sizeof(size_t) - 1.
 */
static void
write_size_t(void *p, size_t n)
{
    uint8_t *q = (uint8_t *)p + SST - 1;
    int i;

    for (i = SST; --i >= 0; --q) {
        *q = (uint8_t)(n & 0xff);
        n >>= 8;
    }
}

/* Let S = sizeof(size_t).  The debug malloc asks for 4 * S extra bytes and
   fills them with useful stuff, here calling the underlying malloc's result p:

p[0: S]
    Number of bytes originally asked for.  This is a size_t, big-endian (easier
    to read in a memory dump).
p[S]
    API ID.  See PEP 445.  This is a character, but seems undocumented.
p[S+1: 2*S]
    Copies of PYMEM_FORBIDDENBYTE.  Used to catch under- writes and reads.
p[2*S: 2*S+n]
    The requested memory, filled with copies of PYMEM_CLEANBYTE.
    Used to catch reference to uninitialized memory.
    &p[2*S] is returned.  Note that this is 8-byte aligned if pymalloc
    handled the request itself.
p[2*S+n: 2*S+n+S]
    Copies of PYMEM_FORBIDDENBYTE.  Used to catch over- writes and reads.
p[2*S+n+S: 2*S+n+2*S]
    A serial number, incremented by 1 on each call to _PyMem_DebugMalloc
    and _PyMem_DebugRealloc.
    This is a big-endian size_t.
    If "bad memory" is detected later, the serial number gives an
    excellent way to set a breakpoint on the next run, to capture the
    instant at which this block was passed out.

If PYMEM_DEBUG_SERIALNO is not defined (default), the debug malloc only asks
for 3 * S extra bytes, and omits the last serialno field.
*/

static void *
_PyMem_DebugRawAlloc(int use_calloc, void *ctx, size_t nbytes)
{
    debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;
    uint8_t *p;           /* base address of malloc'ed pad block */
    uint8_t *data;        /* p + 2*SST == pointer to data bytes */
    uint8_t *tail;        /* data + nbytes == pointer to tail pad bytes */
    size_t total;         /* nbytes + PYMEM_DEBUG_EXTRA_BYTES */

    if (nbytes > (size_t)PY_SSIZE_T_MAX - PYMEM_DEBUG_EXTRA_BYTES) {
        /* integer overflow: can't represent total as a Py_ssize_t */
        return NULL;
    }
    total = nbytes + PYMEM_DEBUG_EXTRA_BYTES;

    /* Layout: [SSSS IFFF CCCC...CCCC FFFF NNNN]
                ^--- p    ^--- data   ^--- tail
       S: nbytes stored as size_t
       I: API identifier (1 byte)
       F: Forbidden bytes (size_t - 1 bytes before, size_t bytes after)
       C: Clean bytes used later to store actual data
       N: Serial number stored as size_t

       If PYMEM_DEBUG_SERIALNO is not defined (default), the last NNNN field
       is omitted. */

    if (use_calloc) {
        p = (uint8_t *)api->alloc.calloc(api->alloc.ctx, 1, total);
    }
    else {
        p = (uint8_t *)api->alloc.malloc(api->alloc.ctx, total);
    }
    if (p == NULL) {
        return NULL;
    }
    data = p + 2*SST;

#ifdef PYMEM_DEBUG_SERIALNO
    bumpserialno();
#endif

    /* at p, write size (SST bytes), id (1 byte), pad (SST-1 bytes) */
    write_size_t(p, nbytes);
    p[SST] = (uint8_t)api->api_id;
    memset(p + SST + 1, PYMEM_FORBIDDENBYTE, SST-1);

    if (nbytes > 0 && !use_calloc) {
        memset(data, PYMEM_CLEANBYTE, nbytes);
    }

    /* at tail, write pad (SST bytes) and serialno (SST bytes) */
    tail = data + nbytes;
    memset(tail, PYMEM_FORBIDDENBYTE, SST);
#ifdef PYMEM_DEBUG_SERIALNO
    write_size_t(tail + SST, serialno);
#endif

    return data;
}

static void *
_PyMem_DebugRawMalloc(void *ctx, size_t nbytes)
{
    return _PyMem_DebugRawAlloc(0, ctx, nbytes);
}

static void *
_PyMem_DebugRawCalloc(void *ctx, size_t nelem, size_t elsize)
{
    size_t nbytes;
    assert(elsize == 0 || nelem <= (size_t)PY_SSIZE_T_MAX / elsize);
    nbytes = nelem * elsize;
    return _PyMem_DebugRawAlloc(1, ctx, nbytes);
}


/* The debug free first checks the 2*SST bytes on each end for sanity (in
   particular, that the FORBIDDENBYTEs with the api ID are still intact).
   Then fills the original bytes with PYMEM_DEADBYTE.
   Then calls the underlying free.
*/
static void
_PyMem_DebugRawFree(void *ctx, void *p)
{
    /* PyMem_Free(NULL) has no effect */
    if (p == NULL) {
        return;
    }

    debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;
    uint8_t *q = (uint8_t *)p - 2*SST;  /* address returned from malloc */
    size_t nbytes;

    _PyMem_DebugCheckAddress(__func__, api->api_id, p);
    nbytes = read_size_t(q);
    nbytes += PYMEM_DEBUG_EXTRA_BYTES;
    memset(q, PYMEM_DEADBYTE, nbytes);
    api->alloc.free(api->alloc.ctx, q);
}


static void *
_PyMem_DebugRawRealloc(void *ctx, void *p, size_t nbytes)
{
    if (p == NULL) {
        return _PyMem_DebugRawAlloc(0, ctx, nbytes);
    }

    debug_alloc_api_t *api = (debug_alloc_api_t *)ctx;
    uint8_t *head;        /* base address of malloc'ed pad block */
    uint8_t *data;        /* pointer to data bytes */
    uint8_t *r;
    uint8_t *tail;        /* data + nbytes == pointer to tail pad bytes */
    size_t total;         /* 2 * SST + nbytes + 2 * SST */
    size_t original_nbytes;
#define ERASED_SIZE 64
    uint8_t save[2*ERASED_SIZE];  /* A copy of erased bytes. */

    _PyMem_DebugCheckAddress(__func__, api->api_id, p);

    data = (uint8_t *)p;
    head = data - 2*SST;
    original_nbytes = read_size_t(head);
    if (nbytes > (size_t)PY_SSIZE_T_MAX - PYMEM_DEBUG_EXTRA_BYTES) {
        /* integer overflow: can't represent total as a Py_ssize_t */
        return NULL;
    }
    total = nbytes + PYMEM_DEBUG_EXTRA_BYTES;

    tail = data + original_nbytes;
#ifdef PYMEM_DEBUG_SERIALNO
    size_t block_serialno = read_size_t(tail + SST);
#endif
    /* Mark the header, the trailer, ERASED_SIZE bytes at the begin and
       ERASED_SIZE bytes at the end as dead and save the copy of erased bytes.
     */
    if (original_nbytes <= sizeof(save)) {
        memcpy(save, data, original_nbytes);
        memset(data - 2 * SST, PYMEM_DEADBYTE,
               original_nbytes + PYMEM_DEBUG_EXTRA_BYTES);
    }
    else {
        memcpy(save, data, ERASED_SIZE);
        memset(head, PYMEM_DEADBYTE, ERASED_SIZE + 2 * SST);
        memcpy(&save[ERASED_SIZE], tail - ERASED_SIZE, ERASED_SIZE);
        memset(tail - ERASED_SIZE, PYMEM_DEADBYTE,
               ERASED_SIZE + PYMEM_DEBUG_EXTRA_BYTES - 2 * SST);
    }

    /* Resize and add decorations. */
    r = (uint8_t *)api->alloc.realloc(api->alloc.ctx, head, total);
    if (r == NULL) {
        /* if realloc() failed: rewrite header and footer which have
           just been erased */
        nbytes = original_nbytes;
    }
    else {
        head = r;
#ifdef PYMEM_DEBUG_SERIALNO
        bumpserialno();
        block_serialno = serialno;
#endif
    }
    data = head + 2*SST;

    write_size_t(head, nbytes);
    head[SST] = (uint8_t)api->api_id;
    memset(head + SST + 1, PYMEM_FORBIDDENBYTE, SST-1);

    tail = data + nbytes;
    memset(tail, PYMEM_FORBIDDENBYTE, SST);
#ifdef PYMEM_DEBUG_SERIALNO
    write_size_t(tail + SST, block_serialno);
#endif

    /* Restore saved bytes. */
    if (original_nbytes <= sizeof(save)) {
        memcpy(data, save, Py_MIN(nbytes, original_nbytes));
    }
    else {
        size_t i = original_nbytes - ERASED_SIZE;
        memcpy(data, save, Py_MIN(nbytes, ERASED_SIZE));
        if (nbytes > i) {
            memcpy(data + i, &save[ERASED_SIZE],
                   Py_MIN(nbytes - i, ERASED_SIZE));
        }
    }

    if (r == NULL) {
        return NULL;
    }

    if (nbytes > original_nbytes) {
        /* growing: mark new extra memory clean */
        memset(data + original_nbytes, PYMEM_CLEANBYTE,
               nbytes - original_nbytes);
    }

    return data;
}

static inline void
_PyMem_DebugCheckGIL(const char *func)
{
    if (!PyGILState_Check()) {
        _Py_FatalErrorFunc(func,
                           "Python memory allocator called "
                           "without holding the GIL");
    }
}

static void *
_PyMem_DebugMalloc(void *ctx, size_t nbytes)
{
    _PyMem_DebugCheckGIL(__func__);
    return _PyMem_DebugRawMalloc(ctx, nbytes);
}

static void *
_PyMem_DebugCalloc(void *ctx, size_t nelem, size_t elsize)
{
    _PyMem_DebugCheckGIL(__func__);
    return _PyMem_DebugRawCalloc(ctx, nelem, elsize);
}


static void
_PyMem_DebugFree(void *ctx, void *ptr)
{
    _PyMem_DebugCheckGIL(__func__);
    _PyMem_DebugRawFree(ctx, ptr);
}


static void *
_PyMem_DebugRealloc(void *ctx, void *ptr, size_t nbytes)
{
    _PyMem_DebugCheckGIL(__func__);
    return _PyMem_DebugRawRealloc(ctx, ptr, nbytes);
}

/* Check the forbidden bytes on both ends of the memory allocated for p.
 * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress,
 * and call Py_FatalError to kill the program.
 * The API id, is also checked.
 */
static void
_PyMem_DebugCheckAddress(const char *func, char api, const void *p)
{
    assert(p != NULL);

    const uint8_t *q = (const uint8_t *)p;
    size_t nbytes;
    const uint8_t *tail;
    int i;
    char id;

    /* Check the API id */
    id = (char)q[-SST];
    if (id != api) {
        _PyObject_DebugDumpAddress(p);
        _Py_FatalErrorFormat(func,
                             "bad ID: Allocated using API '%c', "
                             "verified using API '%c'",
                             id, api);
    }

    /* Check the stuff at the start of p first:  if there's underwrite
     * corruption, the number-of-bytes field may be nuts, and checking
     * the tail could lead to a segfault then.
     */
    for (i = SST-1; i >= 1; --i) {
        if (*(q-i) != PYMEM_FORBIDDENBYTE) {
            _PyObject_DebugDumpAddress(p);
            _Py_FatalErrorFunc(func, "bad leading pad byte");
        }
    }

    nbytes = read_size_t(q - 2*SST);
    tail = q + nbytes;
    for (i = 0; i < SST; ++i) {
        if (tail[i] != PYMEM_FORBIDDENBYTE) {
            _PyObject_DebugDumpAddress(p);
            _Py_FatalErrorFunc(func, "bad trailing pad byte");
        }
    }
}

/* Display info to stderr about the memory block at p. */
static void
_PyObject_DebugDumpAddress(const void *p)
{
    const uint8_t *q = (const uint8_t *)p;
    const uint8_t *tail;
    size_t nbytes;
    int i;
    int ok;
    char id;

    fprintf(stderr, "Debug memory block at address p=%p:", p);
    if (p == NULL) {
        fprintf(stderr, "\n");
        return;
    }
    id = (char)q[-SST];
    fprintf(stderr, " API '%c'\n", id);

    nbytes = read_size_t(q - 2*SST);
    fprintf(stderr, "    %zu bytes originally requested\n", nbytes);

    /* In case this is nuts, check the leading pad bytes first. */
    fprintf(stderr, "    The %d pad bytes at p-%d are ", SST-1, SST-1);
    ok = 1;
    for (i = 1; i <= SST-1; ++i) {
        if (*(q-i) != PYMEM_FORBIDDENBYTE) {
            ok = 0;
            break;
        }
    }
    if (ok)
        fputs("FORBIDDENBYTE, as expected.\n", stderr);
    else {
        fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
            PYMEM_FORBIDDENBYTE);
        for (i = SST-1; i >= 1; --i) {
            const uint8_t byte = *(q-i);
            fprintf(stderr, "        at p-%d: 0x%02x", i, byte);
            if (byte != PYMEM_FORBIDDENBYTE)
                fputs(" *** OUCH", stderr);
            fputc('\n', stderr);
        }

        fputs("    Because memory is corrupted at the start, the "
              "count of bytes requested\n"
              "       may be bogus, and checking the trailing pad "
              "bytes may segfault.\n", stderr);
    }

    tail = q + nbytes;
    fprintf(stderr, "    The %d pad bytes at tail=%p are ", SST, (void *)tail);
    ok = 1;
    for (i = 0; i < SST; ++i) {
        if (tail[i] != PYMEM_FORBIDDENBYTE) {
            ok = 0;
            break;
        }
    }
    if (ok)
        fputs("FORBIDDENBYTE, as expected.\n", stderr);
    else {
        fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
                PYMEM_FORBIDDENBYTE);
        for (i = 0; i < SST; ++i) {
            const uint8_t byte = tail[i];
            fprintf(stderr, "        at tail+%d: 0x%02x",
                    i, byte);
            if (byte != PYMEM_FORBIDDENBYTE)
                fputs(" *** OUCH", stderr);
            fputc('\n', stderr);
        }
    }

#ifdef PYMEM_DEBUG_SERIALNO
    size_t serial = read_size_t(tail + SST);
    fprintf(stderr,
            "    The block was made by call #%zu to debug malloc/realloc.\n",
            serial);
#endif

    if (nbytes > 0) {
        i = 0;
        fputs("    Data at p:", stderr);
        /* print up to 8 bytes at the start */
        while (q < tail && i < 8) {
            fprintf(stderr, " %02x", *q);
            ++i;
            ++q;
        }
        /* and up to 8 at the end */
        if (q < tail) {
            if (tail - q > 8) {
                fputs(" ...", stderr);
                q = tail - 8;
            }
            while (q < tail) {
                fprintf(stderr, " %02x", *q);
                ++q;
            }
        }
        fputc('\n', stderr);
    }
    fputc('\n', stderr);

    fflush(stderr);
    _PyMem_DumpTraceback(fileno(stderr), p);
}


static size_t
printone(FILE *out, const char* msg, size_t value)
{
    int i, k;
    char buf[100];
    size_t origvalue = value;

    fputs(msg, out);
    for (i = (int)strlen(msg); i < 35; ++i)
        fputc(' ', out);
    fputc('=', out);

    /* Write the value with commas. */
    i = 22;
    buf[i--] = '\0';
    buf[i--] = '\n';
    k = 3;
    do {
        size_t nextvalue = value / 10;
        unsigned int digit = (unsigned int)(value - nextvalue * 10);
        value = nextvalue;
        buf[i--] = (char)(digit + '0');
        --k;
        if (k == 0 && value && i >= 0) {
            k = 3;
            buf[i--] = ',';
        }
    } while (value && i >= 0);

    while (i >= 0)
        buf[i--] = ' ';
    fputs(buf, out);

    return origvalue;
}

void
_PyDebugAllocatorStats(FILE *out,
                       const char *block_name, int num_blocks, size_t sizeof_block)
{
    char buf1[128];
    char buf2[128];
    PyOS_snprintf(buf1, sizeof(buf1),
                  "%d %ss * %zd bytes each",
                  num_blocks, block_name, sizeof_block);
    PyOS_snprintf(buf2, sizeof(buf2),
                  "%48s ", buf1);
    (void)printone(out, buf2, num_blocks * sizeof_block);
}


#ifdef WITH_PYMALLOC

#ifdef Py_DEBUG
/* Is target in the list?  The list is traversed via the nextpool pointers.
 * The list may be NULL-terminated, or circular.  Return 1 if target is in
 * list, else 0.
 */
static int
pool_is_in_list(const poolp target, poolp list)
{
    poolp origlist = list;
    assert(target != NULL);
    if (list == NULL)
        return 0;
    do {
        if (target == list)
            return 1;
        list = list->nextpool;
    } while (list != NULL && list != origlist);
    return 0;
}
#endif

/* Print summary info to "out" about the state of pymalloc's structures.
 * In Py_DEBUG mode, also perform some expensive internal consistency
 * checks.
 *
 * Return 0 if the memory debug hooks are not installed or no statistics was
 * written into out, return 1 otherwise.
 */
int
_PyObject_DebugMallocStats(FILE *out)
{
    if (!_PyMem_PymallocEnabled()) {
        return 0;
    }

    uint i;
    const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT;
    /* # of pools, allocated blocks, and free blocks per class index */
    size_t numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
    size_t numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
    size_t numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
    /* total # of allocated bytes in used and full pools */
    size_t allocated_bytes = 0;
    /* total # of available bytes in used pools */
    size_t available_bytes = 0;
    /* # of free pools + pools not yet carved out of current arena */
    uint numfreepools = 0;
    /* # of bytes for arena alignment padding */
    size_t arena_alignment = 0;
    /* # of bytes in used and full pools used for pool_headers */
    size_t pool_header_bytes = 0;
    /* # of bytes in used and full pools wasted due to quantization,
     * i.e. the necessarily leftover space at the ends of used and
     * full pools.
     */
    size_t quantization = 0;
    /* # of arenas actually allocated. */
    size_t narenas = 0;
    /* running total -- should equal narenas * ARENA_SIZE */
    size_t total;
    char buf[128];

    fprintf(out, "Small block threshold = %d, in %u size classes.\n",
            SMALL_REQUEST_THRESHOLD, numclasses);

    for (i = 0; i < numclasses; ++i)
        numpools[i] = numblocks[i] = numfreeblocks[i] = 0;

    /* Because full pools aren't linked to from anything, it's easiest
     * to march over all the arenas.  If we're lucky, most of the memory
     * will be living in full pools -- would be a shame to miss them.
     */
    for (i = 0; i < maxarenas; ++i) {
        uint j;
        uintptr_t base = arenas[i].address;

        /* Skip arenas which are not allocated. */
        if (arenas[i].address == (uintptr_t)NULL)
            continue;
        narenas += 1;

        numfreepools += arenas[i].nfreepools;

        /* round up to pool alignment */
        if (base & (uintptr_t)POOL_SIZE_MASK) {
            arena_alignment += POOL_SIZE;
            base &= ~(uintptr_t)POOL_SIZE_MASK;
            base += POOL_SIZE;
        }

        /* visit every pool in the arena */
        assert(base <= (uintptr_t) arenas[i].pool_address);
        for (j = 0; base < (uintptr_t) arenas[i].pool_address;
             ++j, base += POOL_SIZE) {
            poolp p = (poolp)base;
            const uint sz = p->szidx;
            uint freeblocks;

            if (p->ref.count == 0) {
                /* currently unused */
#ifdef Py_DEBUG
                assert(pool_is_in_list(p, arenas[i].freepools));
#endif
                continue;
            }
            ++numpools[sz];
            numblocks[sz] += p->ref.count;
            freeblocks = NUMBLOCKS(sz) - p->ref.count;
            numfreeblocks[sz] += freeblocks;
#ifdef Py_DEBUG
            if (freeblocks > 0)
                assert(pool_is_in_list(p, usedpools[sz + sz]));
#endif
        }
    }
    assert(narenas == narenas_currently_allocated);

    fputc('\n', out);
    fputs("class   size   num pools   blocks in use  avail blocks\n"
          "-----   ----   ---------   -------------  ------------\n",
          out);

    for (i = 0; i < numclasses; ++i) {
        size_t p = numpools[i];
        size_t b = numblocks[i];
        size_t f = numfreeblocks[i];
        uint size = INDEX2SIZE(i);
        if (p == 0) {
            assert(b == 0 && f == 0);
            continue;
        }
        fprintf(out, "%5u %6u %11zu %15zu %13zu\n",
                i, size, p, b, f);
        allocated_bytes += b * size;
        available_bytes += f * size;
        pool_header_bytes += p * POOL_OVERHEAD;
        quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size);
    }
    fputc('\n', out);
#ifdef PYMEM_DEBUG_SERIALNO
    if (_PyMem_DebugEnabled()) {
        (void)printone(out, "# times object malloc called", serialno);
    }
#endif
    (void)printone(out, "# arenas allocated total", ntimes_arena_allocated);
    (void)printone(out, "# arenas reclaimed", ntimes_arena_allocated - narenas);
    (void)printone(out, "# arenas highwater mark", narenas_highwater);
    (void)printone(out, "# arenas allocated current", narenas);

    PyOS_snprintf(buf, sizeof(buf),
                  "%zu arenas * %d bytes/arena",
                  narenas, ARENA_SIZE);
    (void)printone(out, buf, narenas * ARENA_SIZE);

    fputc('\n', out);

    /* Account for what all of those arena bytes are being used for. */
    total = printone(out, "# bytes in allocated blocks", allocated_bytes);
    total += printone(out, "# bytes in available blocks", available_bytes);

    PyOS_snprintf(buf, sizeof(buf),
        "%u unused pools * %d bytes", numfreepools, POOL_SIZE);
    total += printone(out, buf, (size_t)numfreepools * POOL_SIZE);

    total += printone(out, "# bytes lost to pool headers", pool_header_bytes);
    total += printone(out, "# bytes lost to quantization", quantization);
    total += printone(out, "# bytes lost to arena alignment", arena_alignment);
    (void)printone(out, "Total", total);
    assert(narenas * ARENA_SIZE == total);

#if WITH_PYMALLOC_RADIX_TREE
    fputs("\narena map counts\n", out);
#ifdef USE_INTERIOR_NODES
    (void)printone(out, "# arena map mid nodes", arena_map_mid_count);
    (void)printone(out, "# arena map bot nodes", arena_map_bot_count);
    fputc('\n', out);
#endif
    total = printone(out, "# bytes lost to arena map root", sizeof(arena_map_root));
#ifdef USE_INTERIOR_NODES
    total += printone(out, "# bytes lost to arena map mid",
                      sizeof(arena_map_mid_t) * arena_map_mid_count);
    total += printone(out, "# bytes lost to arena map bot",
                      sizeof(arena_map_bot_t) * arena_map_bot_count);
    (void)printone(out, "Total", total);
#endif
#endif

    return 1;
}

#endif /* #ifdef WITH_PYMALLOC */